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Preface

Since the publication of the first edition of this book, the field of analog integrated circuits has
developed and matured. The initial groundwork was laid in bipolar technology, followed by
a rapid evolution of MOS analog integrated circuits. Thirty years ago, CMOS technologies
were fast enough to support applications only at audio frequencies. However. the continu-
ing reduction of the minimum feature size in integrated-circuit (IC) technologies has greatly
increased the maximum operating frequencies, and CMOS technologies have become fast
enough for many new applications as a result. For example, the bandwidth in some video
applications is about 4 MHz, requiring bipolar technologies as recently as about twenty-three
years ago. Now, however, CMOS easily can accommodate the required bandwidth for video
and is being used for radio-frequency applications. Today, bipolar integrated circuits are used in
some applications that require very low noise, very wide bandwidth, or driving low-impedance
loads.

In this fifth edition, coverage of the bipolar 741 op amp has been replaced with a low-
voltage bipolar op amp, the NE5234, with rail-to-rail common-mode input range and almost
rail-to-rail output swing. Analysis of a fully differential CMOS folded-cascode operational
amplifier (op amp) is now included in Chapter 12. The 5608 phase-locked loop, which is no
longer commercially available, has been deleted from Chapter 10.

The SPICE computer analysis program is now readily available to virtually all electrical
engineering students and professionals, and we have included extensive use of SPICE in this
edition, particularly as an integral part of many problems. We have used computer analysis as
it is most commonly employed in the engineering design process—both as a more accurate
check on hand calculations, and also as a tool 1o examine complex circuit behavior beyond the
scope of hand analysis.

An in-depth look at SPICE as an indispensable tool for IC robust design can be found in
The SPICE Book. 2nd ed.. published by J. Wiley and Sons. This text contains many worked
out circuit designs and verification examples linked to the multitude of analyses available in
the most popular versions of SPICE. The SPICE Book conveys the role of simulation as an
integral part of the design process, but not as a replacement for solid circuit-design knowledge.

This book is intended to be useful both as a text for students and as a reference book for
practicing engineers. For class use, each chapter includes many worked problems; the problem
sets at the end of each chapier illustraie the practical applications of the material in the text. All
of the authors have extensive industrial experience in IC design and in the teaching of courses
on this subject; this experience is reflected in the choice of text material and in the problem
Sels,

Although this book is concerned largely with the analysis and design of ICs, a considerable
amount of material also is included on applications. In practice, these two subjects are closely
linked, and a knowledge of both is essential for designers and users of ICs. The latter compose
the larger group by far, and we believe that a working knowledge of 1C design is a great
advantage 1 an IC user. This is particularly apparent when the user must choose from among a
number of competing designs to satisfy a particular need. An understanding of the IC structure
is then useful in evaluating the relative desirability of the different designs under extremes of
environment or in the presence of variations in supply voltage. In addition, the IC user is ina
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much better position to interpret a manufacturer’s data if he or she has a working knowledge
of the internal operation of the integrated circuit.

The contents of this book stem largely from courses on analog integrated circuits given at
the University of California at the Berkeley and Davis campuses. The courses are senior-level
electives and first-year graduate courses. The book is structured so that it can be used as the
basic text for a sequence of such courses. The more advanced material is found at the end of
each chapter or in an appendix so that a first course in analog integrated circuits can omit this
material without loss of continuity. An outline of each chapter is given below with suggestions
for material to be covered in such a first course, It is assumed that the course consists of three
hours of lecture per week over a fifteen-week semester and that the students have a working
knowledge of Laplace transforms and frequency-domain circuit analysis. It is also assumed
that the students have had an introductory course in electronics so that they are familiar with
the principles of transistor operation and with the functioning of simple analog circuits. Unless
otherwise stated, each chapter requires three to four lecture hours to cover.

Chapter | contains a summary of bipolar transistor and MOS transistor device physics.
We suggest spending one week on selected topics from this chapter, with the choice of topics
depending on the background of the students. The material of Chapters 1 and 2 is quite important
in IC design because there is significant interaction between circuit and device design, as will
be seen in later chapters. A thorough understanding of the influence of device fabrication on
device characteristics is essential.

Chapter 2 is concerned with the technology of IC fabrication and is largely descriptive.
One lecture on this material should suffice if the students are assigned the chapter to read.

Chapter 3 deals with the characteristics of elementary transistor connections. The material
on one-transistor amplifiers should be a review for students at the senior and graduate levels and
can be assigned as reading. The section on two-transistor amplifiers can be covered in about
three hours, with greatest emphasis on differential pairs. The material on device mismatch
effects in differential amplifiers can be covered 1o the extent that time allows.

In Chapter 4, the important topics of current mirrors and active loads are considered. These
configurations are basic building blocks in modern analog IC design, and this material should
be covered in full, with the exception of the material on band-gap references and the material
in the appendices.

Chapter 5 is concerned with output stages and methods of delivering output powerto a load.
Integrated-circuit realizations of Class A, Class B, and Class AB output stages are described,
as well as methods of output-stage protection. A selection of topics from this chapter should
be covered.

Chapter 6 deals with the design of operational amplifiers (op amps). lllustrative examples
of de and ac analysis in both MOS and bipolar op amps are performed in detail, and the limita-
tions of the basic op amps are described. The design of op amps with improved characteristics
in both MOS and bipolar technologies are considered. This key chapter on amplifier design
requires at least six hours.

In Chapter 7, the frequency response of amplifiers is considered. The zero-value time-
constant technique is introduced for the calculations of the ~3-dB frequency of complex circuits.
The material of this chapter should be considered in full.

Chapter 8 describes the analysis of feedback circuits. Two different types of analysis are
presented: two-port and retumn-ratio analyses. Either approach should be covered in full with
the section on voltage regulators assigned as reading.

Chapter 9 deals with the frequency response and stability of feedback circuits and should
be covered up 1o the section on root locus. Time may not permit a detailed discussion of root
locus, but some introduction to this topic can be given.
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In a fifteen-week semester, coverage of the above material leaves about two weeks for
Chapters 10, 11, and 12. A selection of topics from these chapters can be chosen as follows.
Chapter 10 deals with nonlinear analog circuits and portions of this chapter up to Section
10.2 could be covered in a first course. Chapter 11 is a comprehensive treatment of noise
in integrated circuits and material up to and including Section 11.4 is suitable. Chapter 12
describes fully differential operational amplifiers and common-mode feedback and may be
best suited for a second course.

We are grateful to the following colleagues for their suggestions for and/or evaluation of
this book: R. Jacob Baker, Bernhard E. Boser, A. Paul Brokaw, Iwen Chao, John N. Churchill,
David W. Cline, Kenneth C. Dyer, Ozan E. Erdogan, John W. Fattaruso, Weinan Gao, Edwin
W, Greeneich, Alex Gros-Balthazard, Tiinde Gyurics, Ward J. Helms, Kaveh Hosseini, Tim-
othy H. Hu, Shafiq M. Jamal, John P. Keane, Haideh Khorramabadi, Pak Kim Lau, Thomas
W, Matthews, Krishnaswamy Nagaraj, Khalil Najali, Borivoje Nikoli¢, Keith O"Donoghue,
Robert A. Pease, Lawrence T. Pileggi, Edgar Sanchez-Sinencio, Bang-Sup Song, Richard R.
Spencer, Eric J. Swanson, Andrew Y. J. Szeto, Yannis P, Tsividis, Srikanth Vaidianathan, T.R.
Viswanathan, Chorng-Kuang Wang, Dong Wang, and Mo Maggie Zhang. We are also grateful
to Darrel Akers, Mu Jane Lee, Lakshmi Rao, Natapol Sitthimahachaikul, Haoyue Wang, and
Mo Maggie Zhang for help with proofreading, and to Chi Ho Law for allowing us to use on the
cover of this book a die photograph of an integrated circuit he designed. Finally, we would like
to thank the staffs at Wiley and Elm Street Publishing Services for their efforts in producing
this edition.

The material in this book has been greatly influenced by our association with the late
Donald O. Pederson, and we acknowledge his contributions.

Berkeley and Davis, CA, 2008 Paul R. Gray
Paul J. Hurst
Stephen H. Lewis
Robert G. Meyer
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Symbol Convention

Unless otherwise stated, the following symbol convention is used in this book. Bias or dc
quantities, such as transistor collector current /¢ and collector-emitter voltage Vg, are
represented by uppercase symbols with uppercdse subscripts. Small-signal quantities, such
as the incremental change in transistor collector current i., are represented by lowercase
symbols with lowercase subscripts. Elements such as transconductance g, in small-signal
equivalent circuits are represented in the same way. Finally, quantities such as fotal col-
lector current /., which represent the sum of the bias quantity and the signal quantity, are
represented by an uppercase symbol with a lowercase subscript.

















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































CHAPTER n

624

Frequency Response and
Stability of Feedback
Amplifiers

9.1 Infroduction

In Chapter 8, we considered the effects of negative feedback on circuit parameters such asgain
and terminal impedance. We saw that application of negative feedback resulted in a number
of performance improvements, such as reduced sensitivity of gain to active-device parameter
changes and reduction of distortion due to circuit nonlinearities.

Inthischapter, we seetheeffect of negativefeedback onthefrequency responseof acircuit.
The possibility of oscillation in feedback circuits is illustrated, and methods of overcoming
these problemsby compensation of thecircuit are described. Finally, the effect of compensation
on the large-signal high-frequency performance of feedback amplifiersisinvestigated.

Much of the analysisin this chapter is based on the ideal block diagram in Fig. 9.1. This
block diagram includestheforward gain a and feedback factor f, which are the parameters used
in two-port analysis of feedback circuitsin Chapter 8. The equations and resultsin this chapter
could be expressed in terms of the parameters used in the return-ratio analysisin Chapter 8 by
an appropriate change of variables, as shown in Appendix A9.1.

The equations and relationships in this chapter are general and can be applied to any
feedback circuit. However, for simplicity we will often assume the feedback factor f is a
positive, unitless constant. One circuit that has such an f is the series-shunt feedback circuit
shown in Fig 8.24. In this circuit, the feedback network is a resistive voltage divider, so f
is a constant with 0 < f < 1. The forward gain a is a voltage gain that is positive at low
frequencies. This circuit gives anoninverting closed-loop voltage gain.

9.2 Relation Between Gain and Bandwidth in Feedback
Amplifiers

Chapter 8 showed that the performance improvements produced by negative feedback were
obtained at the expense of areduction in gain by afactor (1 + T'), where T is the loop gain.
The performance specifications that were improved were also changed by the factor (1 + 7).
In addition to the foregoing effects, negative feedback also tends to broadband the ampli-
fier. Consider first afeedback circuit as shown in Fig. 9.1 with asimple basic amplifier whose
gain function contains asingle pole

als) = —2 (9.1)

—

pri
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N |
Vi o > > ’ a(s) A
f Figure 9.1 Feedback circuit
| I—

Vio configuration.

where ag is the low-frequency gain of the basic amplifier and p1 isthe basic-amplifier polein
radians per second. Assume that the feedback path is purely resistive and thus the feedback
function f isapositive constant. Since Fig. 9.1 is an ideal feedback arrangement, the overall
gainis

v, a(s)
A@S) = — = ———— 9.2
O = = Tras (©:2)
wheretheloop gainis T(s) = a(s) f. Substitution of (9.1) in (9.2) gives
ao
1- - a a 1
A(s) = PL_ _ 0 - (9.3)
1+ aOfS 1—i+d0f 1+610f1_i 1
1- = p1 p1ltaof
P1
From (9.3) the low-frequency gain Ag is
ao
Ag = 9.4
=11 (9.9)
where
To = ag f = low-frequency loop gain (9.5)

The —3-dB bandwidth of the feedback circuit (i.e., the new pole magnitude) is(1 + a, f) - | p1l
from (9.3). Thusthefeedback hasreduced thelow-frequency gain by afactor (1 + Tp), whichis
consistent with the results of Chapter 8, but it is now apparent that the —3-dB frequency of the
circuit hasbeen increased by the same quantity (1 + 7o). Note that the gain-bandwidth product
isconstant. These results areillustrated in the Bode plots of Fig. 9.2, where the magnitudes of

Gain magnitude dB

N
~
.

N 20 logqg a9

20 logyo [a(j @)l

—6 dB/octave
20 logyg |A(j o)l

Y
2010919577
\ Jd10 1+ TO

 log scale

[Pl

(L+To) Py

Figure 9.2 Gain magnitude versus frequency for the basic amplifier and the feedback amplifier.



020

Chapter 9 m Frequency Response and Stability of Feedback Amplifiers

jo
Pole position splane
for finite Ty \ T -0
0=
- {} \ c
1+T, P1
( o P Figure 9.3 Locus of the pole of the
circuit of Fig. 9.1 asloop gain T
varies.

a(jw) and A(jw) are plotted versus frequency on log scales. It is apparent that the gain curves
for any value of Ty are contained in an envel ope bounded by the curve of |a(jw)|.

Because the use of negative feedback allows the designer to trade gain for bandwidth,
negative feedback is widely used as a method for designing broadband amplifiers. The gain
reduction that occurs is made up by using additional gain stages, which in general are also
feedback amplifiers.

L et us now examine the effect of the feedback on the pole of the overall transfer function
A(9). Itisapparent from (9.3) that asthelow-frequency loop gain T isincreased, the magnitude
of the pole of A(s) increases. Thisisillustrated in Fig. 9.3, which shows the locus of the pole
of A(s) in the s plane as Ty varies. The pole starts at p; for Ty = 0 and moves out along
the negative real axis as Tp is made positive. Figure 9.3 is a simple root-locus diagram and
will be discussed further in Section 9.5.

9.3 Instability and the Nyquist Criterion’

In the above simple example the basic amplifier was assumed to have a single-pole trans-
fer function, and this situation is closely approximated in practice by internally compensated
general -purpose op amps. However, many amplifiers have multipole transfer functions that
cause deviations from the above results. The process of compensation overcomes these prob-
lems, aswill be seen later.

Consider an amplifier with athree-pole transfer function

ao

ats) = (l—;1> (1—;2) (1‘;3>

where | p1|, | p2|, and | p3| are the pole magnitudesin rad/s. The poles are shown in the s plane
in Fig. 9.4 and gain magnitude |a(jw)| and phase ph a(jw) are plotted versus frequency in
Fig. 9.5 assuming about a factor of 10 separation between the poles. Only asymptotes are

(9.6)

s plane

P3 P2 P1

Figure 9.4 Poles of an amplifier in
the s plane.
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Figure 9.5 Gain and phase versus frequency for a circuit with athree-pole transfer function.

shown for the magnitude plot. At frequencies above the first pole magnitude |p1|, the plot
of |a(jw)| falls at 6 dB/octave and ph a(jw) approaches —90°. Above | p2| these become 12
dB/octave and —180°, and above | p3| they become 18 dB/octave and —270°. The frequency
where ph a(jw) = —180° has special significance and is marked w1go, and the value of |a(jw)|
at this frequency is aisp. If the three poles are fairly widely separated (by a factor of 10 or
more), the phase shifts at frequencies | p1l, | p2|, and | p3| are approximately —45°, —135°, and
—225°, respectively. Thiswill now be assumed for simplicity. In addition, the gain magnitude
will be assumed to follow the asymptotic curve and the effect of these assumptionsin practical
cases will be considered later.

Now consider this amplifier connected in a feedback loop asin Fig. 9.1 with f a positive
constant. Since f is constant, the loop gain T'(jw) = a(jw) f will have the same variation with
frequency asa(jw). A plot of af (jw) = T (jw) in magnitude and phase on apolar plot (with w
asaparameter) can thus be drawn using the data of Fig. 9.5 and the magnitude of f. Such aplot
for thisexampleisshownin Fig. 9.6 (not to scale) and iscalled aNyquist diagram. Thevariable
on the curveisfrequency and variesfromw = —oco tow = oo. For w = 0, |T(jw)| = Tp and
ph T(jw) = 0, and the curve meets the real axis with an intercept Tp. As w increases, as
Fig. 9.5 shows, |a(jw)| decreases and ph a(jw) becomes negative and thus the plot isin the
fourth quadrant. ASw — oo, ph a(jw) — —270° and |a(jw)| — 0. Consequently, the plot is
asymptotic to the origin and istangent to theimaginary axis. At the frequency w1gp the phaseis
—180° and the curve crossesthe negativereal axis. If |a(jwigo) f] > 1at thispoint, the Nyquist
diagram will encircle the point (—1, 0) as shown, and this has particular significance, as will
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Im
o negative and increasing in magnitude
Aygof Ty
A @0 K Re
O =m180 ' \\\\/Ph T(JCD) w=0
[T(jw)] AN  positive and increasing

Figure 9.6 Nyquist diagram [polar plot of 7'(jw) in magnitude and phase] corresponding to the
characteristic of Fig. 9.5 (not to scale).

now become apparent. For the purposes of this treatment, the Nyquist criterion for stability of
the amplifier can be stated as follows:

“Consider a feedback amplifier with a stable T'(s) (i.e., al poles of T'(s) are in the left
half-plane). If the Nyquist plot of T(jw) encirclesthe point (—1, 0), the feedback amplifier is
unstable.”

This criterion simply amounts to a mathematical test for poles of transfer function A(s)
in the right half-plane. If the Nyquist plot encircles the point (—1, 0), the amplifier has poles
in the right half-plane and the circuit will oscillate. In fact the number of encirclements of the
point (—1, 0) givesthe number of right half-plane poles and in this example there aretwo. The
significance of polesin the right half-plane can be seen by assuming that acircuit hasapair of
complex poles at (o1 = jwi) where o1 is positive. The transient response of the circuit then
contains aterm K1 exp o1 Sin w1t, which represents a growing sinusoid if o is positive. (K1
isaconstant representing initial conditions.) Thisterm isthen present even if no further input
isapplied, and a circuit behaving in thisway is said to be unstable or oscillatory.

The significance of the point (—1, 0) can be appreciated if the Nyquist diagram isassumed
to passthrough thispoint. Then at thefrequency wigo, T (jw) = a(jw) f = —1land A(jw) = oo
using (9.2) in the frequency domain. The feedback amplifier is thus calculated to have a
forward gain of infinity, and thisindicatesthe onset of instability and oscillation. Thissituation
corresponds to poles of A(s) onthe jw axisinthe s plane. If Ty isthen increased by increasing
ap or f, the Nyquist diagram expands linearly and then encircles (—1, 0). This corresponds to
poles of A(s) in theright half-plane, as shown in Fig. 9.7.

From the above criterion for stability, a ssimpler test can be derived that is useful in most
COoMmMmonN Cases.

“If |T(jw)| > latthefrequency whereph T'(jw) = —180°, thentheamplifier isunstable.”
The validity of this criterion for the example considered here is apparent from inspection of
Fig. 9.6 and application of the Nyquist criterion.

In order to examine the effect of feedback on the stability of an amplifier, consider the
three-pole amplifier with gain function given by (9.6) to be placed in a negative-feedback loop
with f constant. The gain (in decibels) and phase of the amplifier are shown again in Fig. 9.8,
and also plotted isthe quantity 20109, 1/f. Thevalue of 201094 1/ f isapproximately equal
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Figure 9.7 Pole positions corresponding to different Nyquist diagrams.
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Figure 9.8 Amplifier gain and phase versus frequency showing the phase margin.

to the low-frequency gain in decibels with feedback applied since
ao

Ag=—2
1+aof

and thus

%AO

P

0629

(9.7)

(9.8)
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if
To=aof > 1

Consider the vertical distance between the curve of 20l0gqq |a(jw)| and the line
20log;g 1/f in Fig. 9.8. Since the vertical scaleisin decibelsthis quantity is

x = 20109, |a(jw)| — 2010g; 1/ f

= 20l0g4g |a(jo) f|
— 20l0gy0 | T(jw)| (9.10)

(9.9)

Thus the distance x is a direct measure in decibels of the loop-gain magnitude, |T'(jw)].
The point wherethe curve of 20109, |a(jw)| intersectstheline2010g,o 1/ f isthe point where
the loop-gain magnitude |7 (jw)| is 0 dB or unity, and the curve of |a(jw)| in decibels in
Fig. 9.8 can thus be considered a curve of |7 (jw)| in decibelsif the dotted line at 20109, 1/ f
istaken as the new zero axis.

The simple example of Section 9.1 showed that the gain curve versus frequency with
feedback applied (2010g,q |A(jw)|) follows the 2010g,q A line until it intersects the gain
curve 2010g;q |a(jw)|. At higher frequencies the curve 20109, |A(jw)| simply follows the
curve of 20100, |a(jw)| for the basic amplifier. The reason for thisis now apparent in that at
the higher frequencies the loop gain |7 (jw)| — 0 and the feedback then has no influence on
the gain of the amplifier.

Figure 9.8 shows that the loop-gain magnitude |7'(jw)| is unity at frequency wg. At this
frequency the phase of T'(jw) has not reached —180° for the case shown, and using the
modified Nyquist criterion stated above we conclude that this feedback loop is stable. Obvi-
ously |T(jw)| < 1 at the frequency where ph T(jw) = —180°. If the polar Nyquist diagram is
sketched for this example, it does not encircle the point (—1, 0).

As|T(jw)| ismadecloser to unity at thefrequency whereph T'(jw) = —180°, theamplifier
has a smaller margin of stability, and this can be specified in two ways. The most common is
the phase margin, which is defined as follows:

Phase margin = 180°+ (ph 7'(jw) at frequency where | T (jw)| = 1). The phase marginis
indicated in Fig. 9.8 and must be greater than 0° for stability.

Another measure of stability isthegain margin. Thisisdefinedtobe1/|T(jw)| indecibels
at the frequency where ph T'(jw) = —180°, and this must be greater than 0 dB for stability.

The significance of the phase-margin magnitudeis now explored. For the feedback ampli-
fier considered in Section 9.1, where the basic amplifier has a single-pole response, the phase
margin is obviously 90° if the low-frequency loop gain is reasonably large. Thisisillustrated
in Fig. 9.9 and resultsin avery stable amplifier. A typical lower alowable limit for the phase
margin in practice is 45°, with a value of 60° being more common.

Consider a feedback amplifier with a phase margin of 45° and a feedback function f that
isrea (and thus constant). Then

ph T (jewo) = —135° (9.12)
where wg is the frequency defined by
IT(jwo)| =1 (9.12)
Now |T'(jwo)| = la(jwo) f| = 1impliesthat

la(jewo)| = ; (9.13)

assuming that f is positive real.
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Figure 9.9 Gain and phase versus frequency for a single-pole basic amplifier showing the phase
margin for alow-frequency loop gain 7.

Theoverdl gainis

A(jo) = % (9.14)
Substitution of (9.11) and (9.12) in (9.14) gives
AGog) — U0 __aljoo) ___ajen)
1+e¢ /13~ 1-07-07j 03-0.7j
and thus
| A(jwo)| = 'ag;‘)gn = 1f3 (9.15)
using (9.13).

Thefrequency wo, where |T(jwo)| = 1, isthenominal —3-dB point for asingle-polebasic
amplifier, butinthiscasethereis2.4dB (1.3 x) of peaking abovethelow-frequency gainof 1/f.
Consider a phase margin of 60°. At the frequency wg in this case

ph T (jwo) = —120° (9.16)
and
IT(jwo)l =1 (9.17)
Following asimilar analysis we obtain
1
|A(jwo)| = ?
In this case there is no peaking at w = wg, but there has also been no gain reduction at this

frequency.
Finally, the case where the phase margin is 90° can be similarly calculated. In this case

ph T(jwo) = —90° (9.18)
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and
IT(jowo)l = 1 (9.19)
A similar analysis gives
0.7
|A(jwo)| = ~ (9.20)

As expected in this case, the gain at frequency wg is 3 dB below the midband value.

These results are illustrated in Fig. 9.10, where the normalized overall gain versus fre-
guency is shown for various phase margins. The plots are drawn assuming the response is
dominated by the first two poles of the transfer function, except for the case of the 90° phase
margin, which has one pole only. As the phase margin diminishes, the gain peak becomes
larger until the gain approachesinfinity and oscillation occursfor phase margin = 0°. Thegain
peak usually occurs close to the frequency where | T'(jw)| = 1, but for a phase margin of 60°
thereis 0.2 dB of peaking just below this frequency. Note that after the peak, the gain curves
approach an asymptote of —12 dB/octave for phase margins other than 90°. Thisisbecausethe
open-loop gainfallsat —12 dB/octave dueto the presence of two polesin the transfer function.

Thesimpletestsfor stability of afeedback amplifier (i.e., positive phase and gain margins)
can only be applied when the phase and gain margins are uniquely defined. The phase margin
is uniquely defined if there is only one frequency at which the magnitude of the loop gain
equals one. Similarly, the gain margin is uniquely defined if there is only one frequency at
which the phase of the loop gain equals —180°. In most feedback circuits, these margins are
uniquely defined. However, if either of these margins is not uniquely defined, then stability
should be checked using a Nyquist diagram and the Nyquist criterion.

10

Phase margin = 30°

Relative

10 frequency

Relative gain, dB

—6 dB/octave

-15

—12 dB/octave

Figure 9.10 Normalized overall gain for feedback amplifiers versus normalized frequency for various
phase margins. Frequency is normalized to the frequency where the loop gain is unity.
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Theloop gain T = af can be examined to determine the stability of afeedback circuit, as
explained in this section. Alternatively these measures of stability can be applied to the return
ratio %, as explained in Appendix A9.1. Techniques for simulating %2> and 7' = af* using
SPICE have been developed, based on methods for measuring loop transmission.®” These
techniques measure the loop transmission at the closed-loop dc operating point. An advantage
of SPICE simulation of the loop transmission is that parasitics that might have an important
effect areincluded. For example, parasitic capacitanceat the op-ampinput introducesfrequency
dependence in the feedback network in Fig. 8.24, which may degrade the phase margin.

9.4 Compensation
9.4.1 Theory of Compensation

Consider again the amplifier whose gain and phase is shown in Fig. 9.8. For the feedback
circuit in which this was assumed to be connected, the forward gain was Ao, as shown in Fig.
9.8, and the phase margin was positive. Thusthe circuit was stable. It isapparent, however, that
if the amount of feedback is increased by making f larger (and thus Ag smaller), oscillation
will eventually occur. This is shown in Fig. 9.11, where f1 is chosen to give a zero phase
margin and the corresponding overall gain is A; ~ 1/f;. If the feedback is increased to f>
(and A2 >~ 1/ f> isthe overall gain), the phase margin is negative and the circuit will oscillate.
Thusif thisamplifier isto be used in afeedback loop with loop gain larger than ag f1, efforts

|a(jo)| dB

20 logy 02y

20 Ioglofl1 =20 log10A;

\\ 20 |Oglofl =20 |OgloA2
2
o log scale
[Py ] [p21 [ps| \

—— (0]

Ph a(jo)

—45°

-90°|-

-135°

-180°

—225°

—270°—

Figure 9.11 Gain and phase versus frequency for athree-pole basic amplifier. Feedback factor f;
gives azero phase margin and factor f, gives a negative phase margin.
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must be made to increase the phase margin. This processis known as compensation. Note that
without compensation, the forward gain of the feedback amplifier cannot be made less than
A1 ~ 1/f1 because of the oscillation problem.

The simplest and most common method of compensation is to reduce the bandwidth of
the amplifier (often called narrowbanding). That is, adominant poleis deliberately introduced
into the amplifier to force the phase shift to be less than —180° when the loop gain is unity.
Thisinvolves adirect sacrifice of the frequency capability of the amplifier.

If f is constant, the most difficult case to compensate is f = 1, which is a unity-gain
feedback configuration. Inthiscasetheloop-gain curveisidentical tothegain curveof thebasic
amplifier. Consider thissituation and assumethat the basic amplifier hasthe same characteristic
asinFig. 9.11. To compensate the amplifier, weintroduce anew dominant polewith magnitude
|ppl, @ shown in Fig. 9.12, and assume that this does not affect the original amplifier poles
with magnitudes| p1|, | p2|, and | p3|. Thisisoften not the case but is assumed herefor purposes
of illustration.

Theintroduction of the dominant polewith magnitude | p p| into theamplifier gain function
causes the gain magnitude to decrease at 6 dB/octave until frequency | p1| isreached, and over
thisregion theamplifier phase shift asymptotesto —90°. If frequency | pp| ischosen so that the
gain Ja(jw)| is unity at frequency | p1| as shown, then the loop gain is also unity at frequency
| p1| for the assumed case of unity feedback with f = 1. The phase marginin this case is then
45°, which meansthat the amplifier is stable. The origina amplifier would have been unstable
in such afeedback connection.

la(je)] dB Original gain curve
20 logo a9 yd
~< —6 dB/octave
\\\\
\\\—\6 dB/octave —12 dB/octave
\\\
~
~
Gain curve after j RN
compensation I N
\\
= [0)
[ Pp | Pl [P | Ipsl N
N
H N
Ph a(jo) -12 dB/octave
wlog
~a —45° scale
TS~ —90°
~~o
-135° SN
N
~180° 7 \\\ \ Original phase
_2250°1- AN 90°
.| Phase margin \i
—270°~ = 45° \\\
—315°- 7\\\
—360°1- Phase after
compensation

Figure 9.12 Gain and phase versus frequency for athree-pole basic amplifier. Compensation for
unity-gain feedback operation (f = 1) is achieved by introduction of a negative real pole with
magnitude | pp|.
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The price that has been paid for achieving stability in this case is that with the feedback
removed, the basic amplifier has a unity-gain bandwidth of only |p1|, which is much less
than before. Also, with feedback applied, the loop gain now begins to decrease at a frequency
|ppl, and al the benefits of feedback diminish as the loop gain decreases. For example, in
Chapter 8 it was shown that shunt feedback at the input or output of an amplifier reduces the
basic terminal impedance by [1 + 7'(jw)]. Since T(jw) is frequency dependent, the terminal
impedance of a shunt-feedback amplifier will begin to rise when |T'(jw)| begins to decrease.
Thus the high-frequency terminal impedance will appear inductive, as in the case of zg for an
emitter follower, which was calculated in Chapter 7. (See Problem 9.8.)

EXAMPLE

Calculate the dominant-pole magnitude required to give unity-gain compensation of the 702
op amp with a phase margin of 45°. The low-frequency gain isag = 3600 and the circuit has
polesat —(p1/27) = 1 MHz, —(p2/27) = 4 MHz, and —(p3/27) = 40 MHz.

In this example, the second pole p» is sufficiently close to p; to produce significant
phase shift at the amplifier —3-dB frequency. The approach to this problem will be to use the
approximateresults devel oped aboveto obtain aninitial estimate of the required dominant-pole
magnitude and then to empirically adjust this estimate to obtain the required results.

The results of Fig. 9.12 indicate that a dominant pole with magnitude |pp| should be
introduced so that gain ag = 3600 isreduced to unity at | p1/27| = 1 MHz with a6-dB/octave
decrease as a function of frequency. The product |a|w is constant where the slope of the
gain-magnitude plot is —6 dB/octave; therefore

6
LD‘ _1 ﬂ’ =2 78 he
2r ap 127!l 3600
Thiswould give atransfer function
3600

a(jw) = . . . - (9.21)
(1+ ﬂ") (1+ ’w) (1+ ”") (1+ Jw)
[ppl | p1l | p2| | p3l

where the pole magnitudes are in radians per second. Equation 9.21 gives a unity-gain fre-
quency [where |a(jw)| = 1] of 780 kHz. This is slightly below the design value of 1 MHz
because the actual gain curve is 3 dB below the asymptote at the break frequency |p1|. At
780 kHz the phase shift obtained from (9.21) is —139° instead of the desired —135° and this
includes a contribution of —11° from pole p». Although this result is close enough for most
purposes, a phase margin of precisely 45° can be achieved by empirically reducing | pp| until
(9.21) gives a phase shift of —135° at the unity gain frequency. This occurs for |pp /27| =
260 Hz, which gives a unity-gain frequency of 730 kHz.

Consider now the performance of the amplifier whose characteristic is shown in Fig.
9.12 (with dominant pole magnitude |pp|) when used in a feedback loop with f < 1 (i.e,
overall gain Ag > 1). This case is shown in Fig. 9.13. The loop gain now fals to unity at
frequency w, and the phase margin of the circuit is now approximately 90°. The —3-dB
bandwidth of the feedback circuit is w,. The circuit now has more compensation than is
needed, and, in fact, bandwidth isbeing wasted. Thus, although it is convenient to compensate
an amplifier for unity gain and then use it unchanged for other applications (as is done in
many op amps), this procedure is quite wasteful of bandwidth. Fixed-gain amplifiers that are
designed for applications where maximum bandwidth is required are usually compensated for
aspecified phase margin (typically 45° to 60°) at therequired gain value. However, op ampsare
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Figure 9.13 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f = 1 and a phase margin of 45°. The phase margin is shown for operation in afeedback oop
with f < 1.

general-purpose circuits that are used with differing feedback networks with f values ranging
from O to 1. Optimum bandwidth is achieved in such circuits if the compensation is tailored
to the gain value required, and this approach gives much higher bandwidths for high gain
values, as seen in Fig. 9.14. Thisfigure shows compensation of the amplifier characteristic of
Fig. 9.11 for operation in a feedback circuit with forward gain Ag. A dominant pole is added
with magnitude | p,| to give a phase margin of 45°. Frequency |p,| is obviously > |ppl,
and the —3-dB bandwidth of the feedback amplifier isnominally | p1], at which frequency the
loop gain is 0 dB (disregarding peaking). The —3-dB frequency from Fig. 9.13 would be only
wy = | p1|/Ag if unity-gain compensation had been used. Obviously, since Ag can be large,
the improvement in bandwidth is significant.

In the compensation schemes discussed above, an additional dominant pole was assumed
to be added to the amplifier, and the original amplifier poles were assumed to be unaffected by
this procedure. In terms of circuit bandwidth, a much more efficient way to compensate the
amplifier isto add capacitance to the circuit in such away that the original amplifier dominant
pole magnitude | p1| is reduced so that it performs the compensation function. This technique
requires accessto the internal nodes of the amplifier, and knowledge of the nodesin the circuit
where added capacitance will reduce frequency |p1|.

Consider the effect of compensating for unity-gain operation the amplifier characteristic
of Fig. 9.11 in this way. Again assume that higher frequency poles p2 and p3 are unaffected
by this procedure. In fact, depending on the method of compensation, these poles are usually
moved up or down in magnitude by the compensation. This point will be taken up later.
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Figure 9.14 Gain and phase versus frequency for an amplifier compensated for use in a feedback 1oop
with f < 1 and a phase margin of 45°. Compensation is achieved by adding a new pole p/, to the
amplifier.

Compensation of the amplifier by reducing | p1] is shown in Fig. 9.15. For a 45°-phase
margin in aunity-gain feedback configuration, dominant pole magnitude | p} | must cause the
gaintofall to unity at frequency | p2| (the second pole magnitude). Thusthe nominal bandwidth
in a unity-gain configuration is | p2|, and the loop gain is unity at this frequency. This result
can be contrasted with a bandwidth of | p1|, as shown in Fig. 9.12 for compensation achieved
by adding another pole with magnitude | p p| to theamplifier. In practical amplifiers, frequency
| p2| isoften 5 or 10 times frequency | p1| and substantial improvements in bandwidth are thus
achieved.

Theresults of thissection illustrate why the basic amplifier of afeedback circuit isusualy
designed with as few stages as possible. Each stage of gain inevitably adds more poles to the
transfer function, complicating the compensation problem, particularly if awide bandwidthis
required.

9.4.2 Methods of Compensation

In order to compensate a circuit by the common method of narrowbanding described above,
it is necessary to add capacitance to create a dominant pole with the desired magnitude. One
method of achieving thisis shown in Fig. 9.16, which is a schematic of the first two stages
of a simple amplifier. A large capacitor C is connected between the collectors of the input
stage. The output stage, which is assumed relatively broadband, is not shown. A differential
half-circuit of Fig. 9.16 is shown in Fig. 9.17, and it should be noted that the compensation
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Figure 9.15 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f = 1 and a phase margin of 45°. Compensation is achieved by reducing the magnitude | p;| of
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Figure 9.16 Compensation of an amplifier by introduction of alarge capacitor C.

capacitor is doubled in the half-circuit. The magjor contributions to the dominant pole of a
circuit of this type (if Rg is not large) come from the input capacitance of Q4 and Miller
capacitance associated with Q4. Thus the compensation as shown will reduce the magnitude
of the dominant pole of the original amplifier so that it performs the required compensation
function. Almost certainly, however, the higher frequency poles of the amplifier will also be
changed by the addition of C. In practice, the best method of approaching the compensation
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Figure 9.17 Differential half-circuit of Fig. 9.16.

design isto use computer simulation to determinethe original pole positions. A first estimate of
C ismade on the assumption that the higher frequency poles do not change in magnitude and a
new computer simulation is made with C included to check this assumption. Another estimate
of C isthen made on the basis of the new simulation, and this process usually converges after
several iterations.

The magnitude of the dominant pole of Fig. 9.17 can be estimated using zero-value time
constant analysis. However, if thevalue of Crequiredisvery large, thiscapacitor will dominate
and a good estimate of the dominant pole can be made by considering C only and ignoring
other circuit capacitance. In that case the dominant-pole magnitudeis

Pl = 5o 0.22)
where
R = Ry1l|Ria (9.23)
and
Rig = rps + rza (9.24)

One disadvantage of the above method of compensation isthat the value of C required isquite
large (typically > 1000 pF) and cannot be realized on a monolithic chip.

Many general-purpose op amps have unity-gain compensation included on the monolithic
chip and require no further compensation from the user. (The sacrifice in bandwidth caused by
this technique when using gain other than unity was described earlier.) In order to realize an
internally compensated monolithic op amp, compensation must be achieved using capacitance
less than about 50 pF. This can be achieved using Miller multiplication of the capacitance as
in the 741 op amp, which uses a 30 pF compensation capacitor and was analyzed in previous
editions of this book.

Aswell asallowing use of asmall capacitor that can be integrated on the monalithic chip,
this type of compensation has another significant advantage. This is due to the phenomenon
of pole splitting,8 in which the dominant pole moves to a lower frequency while the next
pole moves to a higher frequency. The splitting of the two low-frequency poles in practical
op amps is often a rather complex process involving other higher frequency poles and zeros
aswell. However, the process involved can beillustrated with the two-stage op-amp model in
Fig. 9.18. Theinputisfromfromacurrent i;, which stemsfrom thetransconductance of thefirst
stagetimesthe op-amp differential input voltage. Resistors R1 and R2 represent thetotal shunt
resistances at the output of the first and second stages, including transistor input and output
resistances. Similarly, C1 and C2 represent the total shunt capacitances at the same places.
Capacitor C represents transistor collector-base capacitance of the amplifying transistor in the
second stage plus the compensation capacitance.
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Figure 9.18 Small-signal equivalent circuit of asingle transistor stage. Feedback capacitor C includes
compensation capacitance.

For the circuit of Fig. 9.18,

%
—iy = R—l +Vv1C1s + (V1 — V,)Cs (9.25)
1

V,
gmV1 + R—"Z + VoCas + (Vo —V1)Cs = 0 (9.26)

From (9.25) and (9.26)
Vo _ (gm — Cs)RaRy
is 14 s[(C2 + C)R2 + (C1+ C)R1 + g RoR1C] + s2R2R1(C2C1 + CC2 4 CC1)

(9.27)
The circuit transfer function has a positive real zero at
8m
== 9.27q
= (9.279)

which usually has such alarge magnitude in bipolar circuits that it can be neglected. Thisis
often not the case in MOS circuits because of their lower g,,. This point is taken up later.

The circuit has atwo-pole transfer function. If p; and p2 are the poles of the circuit, then
the denominator of (9.27) can be written

D(s) = (1 - psl) (1 - ;2) (9.28)

1 1 2
:1_s(+>+ g (9.29)
Pl P2 pip2
and thus
2
D)~1- > 42 (9.30)
Pl pip2

if the poles arerea and widely separated, which is usually true. Note that p; isassumed to be
the dominant pole.
If the coefficientsin (9.27) and (9.30) are equated then

1
B (C24+ C)R2+ (C1+ C)R1 + gmR2R1C
and this can be approximated by

p1= (9.31)

1

_ 9.32
gmRoR1C (9:32)

r1=
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sincethe Miller effect due to C will bedominant if Cislargeand g,, R1, g, R2 > 1. Equation
9.31 is the same result for the dominant pole as is obtained using zero-value time constant
analysis.

The nondominant pole p, can now be estimated by equating coefficients of s in (9.27)
and (9.30) and using (9.32).

C2C1+ C(Co2 + C1)

Equation 9.32 indicates that the dominant-pole magnitude |p1| decreases as C increases,
whereas (9.33) showsthat | p2| increases as C increases. Thus, increasing C causes the poles
to split apart. The dominant pole moves to alower frequency because increasing C increases
the time constant associated with the output node of thefirst stagein Fig. 9.18. The reason the
nondominant pole moves to a higher frequency is explained below.

Equation 9.33 can beinterpreted physically by associating p» with the output nodein Fig.
9.18. Then

p2 = (9.33)

1
" R,Cr
where R, isthe output resistance including negative feedback around the second stage through
C, and C7 isthetotal capacitance from the output node to ground. The output resistanceis
R
T1+T
where R is the open-loop output resistance, and T is the loop gain around the second stage
through capacitor C, whichisthe open-loop gain, g, R2, timesthefeedback factor, f. Therefore,
R> N 1
T 1t guRaf  guf
assumingthat T = g, R2 f > 1. Since py isahigh frequency, wewill find f at high frequency

w,wherel/wC1 < R1. Thenthefeedback around the second stageiscontrolled by acapacitive
voltage divider and

P2 = (9.333)

(9.33b)

o

(9.330)

o

C
~ 9.33d
e (9.330)
Thus,
C+C
R, ~ 1 (9.339)
gmC

The total capacitance from the output node to ground is C» in parallel with the series combi-
nation of C and Cy:

CC1  CCp+ C1Cp+ CCy
C+C1 C+C1

Substituting (9.33€) and (9.33f) into (9.33a) gives (9.33).

Equations 9.33d and 9.33f show that increasing C increases the feedback factor but has
little effect on the total capacitance in shunt with the output node because C isin series with
C1. As aresult, increasing C reduces the output resistance and increases the frequency of
the nondominant pole. In the limit as C — oo, the feedback factor approaches unity, and
p2 — —gm/(C2+ C1). In practice, however, (9.33d) shows that the feedback factor is less
than unity, which limits the increase in the magnitude of the nondominant pole frequency.

Cr=Cx+

(9.33f)



042 Chapter 9 m Frequency Response and Stability of Feedback Amplifiers

jo
A
splane
Poles split
e >} > 0
anC 1 1 1
C,Cy + C(Cy + Cy) R,C, R Cy ImR1RC

Figure 9.19 Locus of the poles of the circuit of Fig. 9.18 as C isincreased from zero, for the case
—1/(RiC1) > —1/(R2C2).

On the other hand, with C = 0, the poles of the circuit of Fig. 9.18 are

1
=— 9.34a)
P1 RiC1 ( )
= ! (9.34b)
p2= RaCo -
Thus as C increases from zero, the locus of the poles of the circuit of Fig. 9.18 isas shown in

Fig. 9.19.

Another explanation of pole splitting is asfollows. The circuit in Fig. 9.18 has two poles.
The compensation capacitor across the second stage provides feedback and causes the second
stageto act like anintegrator. Thetwo poles split apart as C increases. One pole movesto alow
frequency (toward dc), and the other movesto a high frequency (toward —oo) to approximate
an ideal integrator, which has only one pole at dc.

The previous calculations have shown how compensation of an amplifier by addition of
alarge Miller capacitance to a single transistor stage causes the nondominant pole to move
to amuch higher frequency. For the sake of comparison, consider compensating the circuit in
Fig. 9.18 without adding capacitance to C by making C; large enough to produce a dominant
pole. Then the pole can be calculated from (9.31) as p1 >~ —1/R1C1. The nondominant pole
can be estimated by equating coefficients of s2 in (9.27) and (9.30) and using thisvalue of pj.
Thisgives p, >~ —1/R(C2 + C). Thisvalue of p; isapproximately the same asthat given by
(9.34b), which isfor C = 0 and is before pole splitting occurs. Thus, creation of a dominant
pole in the circuit of Fig. 9.18 by making C1 large will result in a second pole magnitude
|p2| that is much smaller than that obtained if the dominant pole is created by increasing
C. As a conseguence, the realizable bandwidth of the circuit when compensated in this way
is much smaller than that obtained with Miller-effect compensation. Also, without using the
Miller effect, the required compensation capacitor often would be too large to be included on
amonolithic chip. The same general conclusions are true in the more complex situation that
existsin many practical op amps.

The results derived in this section are useful in further illuminating the considerations of
Section 7.3.3. In that section, it was stated that in a common-source cascade, the existence of
drain-gate capacitance tendsto cause pole splitting and to produce adominant-pole situation. If
the equivalent circuit of Fig. 9.18 istaken as arepresentative section of a cascade of common-
source stages (C2 isthe input capacitance of the following stage) and capacitor C is taken as
C,q, thecalculations of this section show that the presence of C,,; does, infact, tend to produce
a dominant-pole situation because of the pole splitting that occurs. Thus, the zero-value time
constant approach gives a good estimate of w_3gg in such circuits.

The theory of compensation that was developed in this chapter was illustrated with some
bipolar-transistor circuit examples. The theory appliesin genera to any active circuit, but the
unique device parameters of MOSFETS cause some of the approximations that were made in
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the preceding analysesto becomeinvalid. The special aspects of MOS amplifier compensation
are now considered.

9.4.3 Two-Stage MOS Amplifier Compensation

The basic two-stage CMOS op amp topology shown in Fig. 6.16 is essentially identical to
its bipolar counterpart. As a consequence, the equivalent circuit of Fig. 9.18 can be used to
represent the second stage with its compensation capacitance. The poles of the circuit are
again given by (9.32) and (9.33) and the zero by (9.27d). In the case of the MOS transistor,
however, thevalue of g, istypically an order of magnitude lower than for abipolar transistor,
and the break frequency caused by the right half-plane zero in (9.27) may actually fall below
the nominal unity-gain frequency of the amplifier. The effect of thisis shown in Fig. 9.20. At
thefrequency |z| the gain characteristic of the amplifier flattens out because of the contribution
to the gain of +6 dB/octave from the zero. In the same region the phase is made 90° more
negative by the positive real zero. As a consequence, the amplifier will have negative phase
margin and be unstable when the influence of the next most dominant pole is felt. In effect,
the zero halts the gain roll-off intended to stabilize the amplifier and simultaneously pushes
the phase in the negative direction. Note also from (9.33) that thelow g,,, of the MOSFET will
tend to reduce the value of | p,| relative to a bipolar amplifier.

Another way to view this problem is to note from Fig. 9.18 that at high frequencies,
feedforward through C tends to overwhelm the normal gain path via g, of the second stage

Vg, .
T?(J“’)‘
dB
—6 dB/octave
__.FS—\ '\'T"
. L o (log scale)
Ipal g = 9 AN
ph2 (jo)
— o (log scale)
e N\
—90° -
-135°—
-180° |~ \

Figure 9.20 Typical gain and phase of the CMOS op amp of Fig. 6.16.
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if g issmall. The feedforward path does not have the 180° phase shift of the normal gain
stage, and thus the gain path loses an inverting stage. Any feedback applied around the overall
amplifier will then be positive instead of negative feedback, resulting in oscillation. At very
high frequencies, C acts like a short circuit, diode-connecting the second stage, which then
simply presents a resistive load of 1/g,, to the first stage, again showing the loss of 180° of
phase shift.

The right half-plane (RHP) zero is caused by the interaction of current from the g,
generator and the frequency-dependent current that flows forward from the input node to the
output node through C. The current through Cin Fig. 9.18 is

i =sC(V, — V1) (9.35)

This current can be broken into two parts: afeedback current i ;;, = sCv, that flows from the
output back toward the input and a feedforward current i ;s = sCvy that flows forward from
the input toward the output. This feedforward current is related to v1. The current g,,v1 from
the controlled source flows out of the output node and is also related to vi. Subtracting these
two currents gives the total current at the output node that is related to vi:

v, = (gm — sC)v1 (9.36)

A zero existsin the transfer function where this current equals zero, at z = g,/ C.

Three techniques have been used to eliminate the effect of the RHP zero. One approach
isto put asource follower in series with the compensation capacitor,® as shown in Fig. 9.21a.
The source follower blocks feedforward current through C from reaching the output node and
therefore eliminatesthe zero. Thiswill be shown by analyzing Fig. 9.18 with C replaced by the
model in Fig. 9.21b. Here the source follower is modeled as an ideal voltage buffer. Equation
9.25 till holds because the same elements are connected to the input node and the voltage
across C remains v, — v1. However, summing currents at the output node gives a different
equation than (9.26) because no current flows through C to the output node due to the buffer.
The new equation is

V,
gmV1+ R—" +5C2v, =0 (9.37)
2

Combining this equation with (9.25) gives
A gmR1R2

Yo _ . (9.38)
is 14 5[R1(C1+4 C)+ R2C2+ gmR2R1C] + s°R1R2C2(C1 + C)
Voo
VO
Vi c Vo v; c :] Vi ICI | A
SN S <

s

_V$

(a (b)
Figure 9.21 (a) Compensation capacitor Cin Fig. 9.18 isreplaced by C in serieswith a source follower.
(b) A simple model for the capacitor and source follower.
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The zero has been eliminated. Assuming g,, R1, gm R2 > 1 and C islarge, the same steps that
led from (9.27) to (9.32) and (9.33) give

1

N 9.394)

P1 en RoR1C ( )
C

o~ gm ~ _Sm (9.39b)

T(C1+0OC G

The dominant pole p1 is unchanged, and p; is about the same as before if C2 > C1. This
approach eliminates the zero, but the follower requires extra devices and bias current. Also,
the source follower has a nonzero dc voltage between its input and output. This voltage will
affect the output voltage swing since the source-follower transistor must remain in the active
region to maintain the desired feedback through C.

A second approach to eliminate the RHP zero isto block the feedforward current through C
using acommon-gatetransistor, 19 asillustrated in Fig. 9.22a. Thisfigure shows atwo-stage op
amp, with the addition of two current sources of value /o and transistor M11. The compensation
capacitor is connected from the op-amp output to the source of M1;. Here, common-gate M11
allows capacitor current to flow from the output back toward the input of the second stage.
However, the impedance looking into the drain of M1 isvery large. Therefore, feedforward
current through Cisvery small. If the feedforward current is zero, the RHP zero is eliminated.
A simplified small-signa model for the common-gate stage and compensation capacitor is
shown in Fig. 9.22b. Here common-gate M11 ismodeled asanideal current buffer. Replacing
CinFig. 9.18 with the model in Fig. 9.22b yields

—iy = Vi +Vv1C1s — V,Cs (9.40a)
Ry
gmV1 + Yo +V,Cs +V,Cos =0 (9.40b)
R>
VDD
®n ®. ®n
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Figure 9.22 (a) A two-stage CMOS op amp with
common-gate My; connected to compensation
= capacitor C. (b) Simple small-signal model for M1,
(b) and C.
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Combining these equations gives

Vo _ gmR1R?

is 14 5[R1C1+ Ro(C + C2) + gm R1R2C] + s?R1R2C1(C2 + C)
The zero has been eliminated. Again assuming g,, R1, g R2 > 1 and Cislarge, the poles are

(9.41)

1
O — 9.42a
P ngZRlC ( )
Em C
X — - — 9.42b
Pr==cie, o (2.420)

The dominant poleisthe same as before. However, the nondominant pole p isdifferent. This
p2 is a ahigher frequency than in the two previous approaches because C > C1 when C
and C» are comparable. (In this section, we assume that the two-stage MOS op amp in Fig.
9.18 drives a load capacitor Ca that is much larger than parasitic capacitance C1; therefore
C» > (C1.) Therefore, a smaller compensation capacitor C can be used here for a given load
capacitance C», when compared to the previous approaches. Theincreasein | p»| arisesbecause
theinput nodeis not connected to, and thereforeis not loaded by, the compensation capacitor.
An advantage of this schemeisthat it provides better high-frequency negative-power-supply
rejection than Miller compensation. (Power-supply rejection wasintroduced in Section 6.3.6.)
With Miller compensation, C is connected from the gate to drain of Mg, and it shorts the
gate and drain at high frequencies. Assuming Ve is approximately constant, high-frequency
variations on the negative supply are coupled directly to the op-amp output. Connecting C to
common-gate M1, eliminates this coupling path. Drawbacks of this approach are that extra
devices and dc current are needed to implement the scheme in Fig. 9.22a. Also, if thereis a
mismatch between the 1> current sources, the difference current must flow in the input stage,
which disruptsthe balancein theinput stage and affects the input-offset voltage of the op amp.

When the first stage of the op amp uses a cascode transistor, the compensation capacitor
can be connected to the source of the cascode device as shown in Fig. 9.23.1 This connection
reduces the feedforward current through C, when compared to connecting C to node ), if the

VDD

in— — — in+
®

VBB VBB

= T

+

o
i i L

_V§

Figure 9.23 A two-stage CMOS op amp with a cascoded current-mirror load in the input stage, and
with the compensation capacitor C connected to the cascode node.
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Figure 9.24 (a) Small-signal equivalent circuit of a compensation stage with nulling resistor.
(b) Pole-zero diagram showing movement of the transmission zero for various values of R;.

voltage swing at the source of the cascode device is smaller than the swing at its drain. This
approach eliminates the feedforward path, and therefore the zero, if the voltage swing at the
source of the cascode device is zero. An advantage of this approach is that it avoids the extra
devices, bias current, and mismatch problemsin Fig. 9.22a.

A third way to deal withthe RHPzeroisto insert aresistor in serieswith the compensation
capacitor, as shown in Fig. 9.24a.1213 Rather than eliminate the feedforward current, the
resistor modifies this current and allows the zero to be moved to infinity. If the zero movesto
infinity, the total forward current at the output node that is related to v must go to zero when
w — 00. When w — oo, capacitor C is ashort circuit and therefore the feedforward current
isonly dueto Ry:

irf(w— 00) = —— (9.43)

When this current is added to the current from the g,, source, the total current at the output
node that isrelated to vy is

1
iy = (gm - RZ) Vi (9.44)

when w — oo. If Rz = 1/g,,, thisterm vanishes, and the zero is at infinity.
The complete transfer function can be found by carrying out an analysis similar to that
performed for Fig. 9.18, which gives

1
v gmR1R2 {l—sc < —Rz)]
0 8m
0 _ 9.45
iy 1+ bs + cs? + ds3 ( )
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where

b= Ry(C2+C)+ R1(C1+ C)+ RzC + gmR1R2C (9.46q)
¢ = R1R2(C1C2+ CC1+ CC2) + RzC(R1C1 + R2C2) (9.46b)
d = R1R2R;C1C2C (9.46¢)

Again assuming g, R1, gn R2 > 1 and Cislarge, the poles can be approximated by

1
1A — 9.47a
b gmR2R1C ( )
C
P2~ — Sm L (9.47b)
C1C2 + C(C1+ C2) C1+Co
1

N o— 9.47c
p3 R,C1 ( )

The first two poles, p1 and po, are the same as for the original circuit in Fig. 9.18. The third
poleis at a very high frequency with | p3| > | p2| because typicaly C1 <« C» (since C1 isa
small parasitic capacitor and C> is the load capacitor) and Rz will be about equal to 1/g,, if
the zero ismoved to a high frequency [from (9.44)]. Thiscircuit has three poles because there
arethreeindependent capacitors. In contrast, Fig. 9.18 hasthree capacitorsthat form aloop, so
only two of the capacitor voltages are independent. Thus there are only two poles associated
with that circuit.
The zero of (9.45) is

1

i= N
(_Rz>c
8m

This zero moves to infinity when R, equals 1/g,,. Making the resistor greater than 1/g,,
moves the zero into the left half-plane, which can be used to provide positive phase shift at
high frequencies and improve the phase margin of a feedback circuit that uses this op amp.13
The movement of the zero for increasing Rz is shown in Fig. 9.24b.

Figure 9.25 shows a Miller-compensated op amp using a resistor Ry in series with the
compensation capacitor. In practice, resistor Rz isusually implemented usingaM OStransistor

(9.48)

Vop

M s i

N

My
/]
I
—o ™, My |b— R C cV,
Vi
+ o M

| W=~ I_G

@ tons Ms |1 M, ¥ 1w

_V$

Figure 9.25 A two-stage CMOS op amp.
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biased in the triode region. From (1.152), a MOS transistor operating in the triode region
behaveslike alinear resistor if V3 <« 2(Vgs — V;). The on-resistance R of thetriode device
can be madeto track 1/g,, of common-source transistor Mg if the two transistors are identical
and havethesame Vg5 — V;. WhenthisMOStransistor isplaced to thel eft of the compensation
capacitor as shown in Fig. 9.25, its source voltage is set by Vi, which is approximately
constant. Therefore, Vs of the triode transistor can be set by connecting its gate to adc bias
voltage, which can be generated using replica biasing.1® (See Problem 9.23))

Another way to shift the zero location that can be used in multistage op amps will be
presented in Section 9.4.5.

In al the compensation approaches described so far, the dominant pole is set by com-
pensation capacitor C and isindependent of the load capacitor C». However, the second pole
isafunction of Cs. If the op amp will be used in different applications with a range of load
capacitors, the compensation capacitor should be selected to give an acceptable phase margin
for thelargest C». Then the phase margin will increase astheload capacitor decreases because
| p2| isinversely proportiona to Co.

EXAMPLE

Compensate the two-stage CMOS op amp from the example in Section 6.3.5 (Fig. 6.16) to
achieve aphase margin of 45° or larger when driving aload capacitance of 5 pF, assuming the
op amp is connected in unity-gain feedback.

With the op amp in unity-gain feedback, f = 1 andtheloopgain T = af = a (or, equiv-
alently, Aoc = 1 and the return ratio % = a). Therefore, the phase and gain margins can be
determined from Bode plots of |a| and ph(a).

The two-stage op amp and a simplified model for this op amp are shown in Fig. 9.25. In
the model, al capacitances that connect to node ) are lumped into C1, and all capacitances
that connect to the output node are lumped into Ca. If we apply an input voltagev; in Fig. 9.26,
acurrent i1 = g,,1V; isgenerated. Thisiy drivesacircuit that is the same as the circuit that i,
drivesin Fig. 9.18. Therefore, the equations for the two poles and one zero for the circuit in
Fig. 9.18 apply herewith iy = g,,1Vi, gm = gme, R1 = ro2||rea, @nd Ro = ryg||rp7.

We will use Miller compensation with a series resistance to eliminate the zero. To achieve
a 45° phase margin, the compensation capacitor C should be chosen so that | p»| equals the
unity-gain frequency (assuming the zero has been eliminated and | p3| > | p2|). Sincethegain
roll-off from | p1| to | p2| is —6 dB/octave, |a(jw)| - @ isconstant from | p1| to | p2|. Therefore,

ao - |p1l =1-|p2l (9.49)
where
ap = gm1(ro2l|704)gm6(ro6lro7) = gm1R18me R2 (9.50)
R, C
r—J\N\/——'I |'—1
® y | | v

+ .
1o

Vi _—r Cin ImVi Ri=rollres == C; ImeVx Ry =rogllfor == C2

I

Figure 9.26 A small-signal model for the op amp in Fig. 9.25.
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isthe dc gain of the op amp. Substitution of (9.47) and (9.50) into (9.49) gives

1 8mb
R R> - =1
Em118m6 12 gm6R2R1C C1+ Co
or
Bmi _ _8mé (9.51)
C C1+Co

The capacitance C» at the output is dominated by the 5-pF load capacitance, and the internal
parasitic capacitance C; is much smaller than 5 pF (SPICE simulation gives C1 ~ 120 fF).
Therefore C1 + C2 ~ 5 pF. From the example in Section 6.3.5, we find

g1 = Kp(W/L)1lVot| = (64.7 pANVZ)(77)(0.2V) = 1 mANV
and
gm6 = k. (W/L)s(Vove) = (194 nA/V2)(16)(0.5 V) = 1.55 mA/V
Substituting these values into (9.51) and rearranging gives

gml _ 1mAN

- gm6(cl + )N T man
To eliminate the zero due to feedforward through C, aresistor R of value 1/g,,6 = 645 Q can
be connected in series with the compensation capacitor C. (In practice, this resistance should
be implemented with an NMOS transistor that is a copy of Mg biased in the triode region, so
that Rz = 1/gm6. See Problem 9.23.)

SPICE simulations (using models based on Table 2.4) of the op amp before and after
compensation give the magnitude and phase plots shown in Fig. 9.27. Before compensation,
theamplifier isunstable and has aphase margin of —6°. After compensation with R; = 645
and C = 3.2 pF the phase margin improvesto 41° with aunity-gain frequency of 35 MHz, and
thegain marginis 15 dB. Thisphase margin islessthan the desired 45°. The simulated val ue of
2m6151.32 mA/V and differs somewhat from the calculated g,,,6, because the formulas used to
calculate g, are based on square-law eguationsthat are only approximately correct. Changing
Rz t0 1/g,,6(SPICE) = 758 Q gives a phase margin of 46° with a unity-gain frequency of
35 MHz, and the gain margin is 22 dB. Without Rz, the phase margin is 14°, so eliminating
the right-half-plane zero significantly improves the phase margin.

Two earlier assumptions can be checked from SPICE simulations. First, C; ~ 120 fFfrom
SPICE and C2 ~ 5 pF; therefore, the assumption that C1 <« C2 isvalid. Also, | p3| > |p2|

m  followsfrom |ps| ~ 1/(RzC1) = gme/C1, |p2| = gme/C2,and C1 K C2.

C (5pF) = 3.2 pF

9.4.4 Compensation of Single-Stage CMOS Op Amps

Single-stage op amps, such as the telescopic cascode or folded cascode, have only one gain
stage; therefore Miller compensation is not possible. These op amps have high open-loop
output resistance and are typically used in switched-capacitor circuits, wheretheload is purely
capacitive. Therefore, the dominant pole is associated with the output node, and the load
capacitor provides the compensation.

A simplified, fully differential, telescopic-cascode op amp is shown in Fig. 9.28a. The
simplificationsherearethat ideal current sourcesreplacebiasingtransistorsandall capacitances
have been lumped into the load capacitors C;, and the parasitic capacitors C), at the cascode
nodes. The differential-mode (DM) voltage gain can be found by analyzing the half-circuit
shown in Fig. 9.28b. Since there are two independent capacitors, the DM gain has two poles.
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An exact analysis, ignoring body effect, givesa DM gain of

VLd _ gmlrol(gmlArolA + 1) (9 52)
Vid 1+ 5(ro1aCL + ro1Cp + ro1CL + 8m1aT014701CL) + 527017014 CpCL '

If gmro > 1, (9.52) simplifiesto

\/UJ _ 8m1lo18ml1AT0lA (9 53)
Vid 1+ 5gm14r014701CL + 5%r017014CpCL

The gain has two poles and no zeros. Assuming widely spaced real poles, the poles can be
approximated using (9.29) and (9.30):

1 1
8m1AT01AT01CL R,Cp.

pp v —SmiA (9.54b)

(9.548)

pL=~ —
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VDD

21

Figure 9.28 (a) Simplified CMOS
telescopic-cascode op amp. (b) The
(b) differential-mode half-circuit.

where R, isthe output resistance of the DM half-circuit and R, & gn147014F01- Alternatively,
these poles can be estimated using time-constant analysis as shown in Chapter 7. The dominant
poleisset by the zero-value time constant for Cr., which is computed with C,, open and equals
R,C. The nondominant pole can be approximated using the short-circuit time constant for
Cp, whichis computed with C;, shorted. When C, is shorted, the resistance seen by C, isthe
resistance looking into the source of M14, whichis1/g,14 (ignoring body effect). Typicaly,
|p1l < |p2| because R, > 1/gm14 and Cr > C),. If the phase margin is not large enough for
agiven feedback application, additional capacitance can be added at the output nodeto increase
C1, which decreases | p1| without affecting p2 and therefore increases the phase margin.

Capacitance C,, consists of Cy14 plus smaller capacitances such as Cgp1 and Cypi4.
Assuming Cp ~ Cgs1a, then |pa| ~ gm1a/Cp =~ gmi1a/Cygs1a ~ @r of M14. Thus, the fre-
quency at which the magnitude of the op-amp gain equals one, which is called the unity-gain
bandwidth, can be very high with this op amp.

A simplified, fully differential, folded-cascode op amp is shown in Fig. 9.29a. As above,
thesimplificationsarethat ideal current sourcesreplace biasing transistorsand all capacitances
have been lumped into the load capacitors C;, and the parasitic capacitors C;, at the cascode
nodes. With these simplifications, the DM voltage gain can be found by analyzing the half-
circuit showninFig. 9.29b. Thiscircuit isidentical to Fig. 9.28b except that the cascode device
isp-channel rather than n-channel and C;, replaces C,. Therefore, thegainisidentical to (9.52)
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21,

Figure 9.29 (a) Simplified CMOS
folded-cascode op amp. (b) The
(b) differential-mode half-circuit.

with C), replaced by C/p. Hence the dominant pole has the same form as (9.54a)
1 1

A — A — 9.554
n 8&m1ATo1aT01CL R,CL ( )
The second poleis associated with C;, and is approximately given by
8m1A
P2~ — Z/ (9.55b)

Equations 9.55b and 9.54b look similar, but |p2| for the folded-cascode op amp will usually
be smaller than |p2| for the telescopic-cascode op amp. The reason is that, while the
transconductances of the cascode devices in the two circuits are often comparable, C;, will
be significantly larger than C,. One cause of the higher capacitance is that more devices are
connected to the node associated with C’, in the folded-cascode op amp than are connected
to the node associated with C), in the telescopic cascode. (Recall that the output of each ideal
current source in Fig. 9.29a is the drain of atransistor.) Also, W/L of the p-channel cascode
transistor M1, in Fig. 9.29b must be larger than W/ L of the n-channel cascode devicein Fig.
9.28b to make their transconductances comparable. The larger W/ L will cause C’p to belarger
than C,. The smaller | p,| for thefolded cascode leads to asmaller unity-gain bandwidth, if the
two op amps are compensated to give the same phase margin in agiven feedback application.

Thecircuitsin Figs. 9.28 and 9.29 are fully differential. These op amps can be converted
to single-ended op amps by replacing a pair of matched current sources with a current mirror.
In Fig. 9.28a, the two | current sources would be replaced with a p-channel current mirror. In
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Fig. 9.29a, the two I current sources would be replaced with a n-channel current mirror. As
shown in Section 7.3.5, acurrent mirror introduces a closely spaced pole-zero pair, in addition
to the poles p1 and p» in (9.54) and (9.55).

Active cascodes can be used to increase the low-frequency gain of an op amp, asshownin
Fig. 6.30a. There are four active cascodes in Fig. 6.30a; each consists of a cascode transistor
(M14 —Myy) and an auxiliary amplifier (A1 or A2) in afeedback loop. When such an op amp
isplaced in feedback, multiple feedback loops are present. There are four local feedback loops
associated with the active cascodes in the op amp and one global feedback loop that consists
of the op amp and a feedback network around the op amp. All these feedback loops must be
stable to avoid oscillation. The stability of each local feedback loop can be determined from
its loop gain or return ratio. Since the auxiliary amplifiers in these loops are op amps, each
auxiliary amplifier can be compensated using the techniques described in this chapter to ensure
stability of these local loops. Then the global feedback loop can be compensated to guarantee
its stability.

9.4.5 Nested Miller Compensation

Many feedback circuits require an op amp with a high voltage gain. While cascoding is com-
monly used to increase the gain in op amps with a total supply voltage of 5V or more,
cascoding becomes increasingly difficult as the power-supply voltage is reduced. (See Chap-
ter 4.) To overcome this problem, simple gain stages without cascoding can be cascaded to
achieve high gain. When three or more voltage-gain stages must be cascaded to achieve the
desired gain, the op amp will have three or more poles, and frequency compensation becomes
complicated. Nested Miller compensation can be used with more than two gain stages.!*1°
This compensation scheme involves repeated, nested application of Miller compensation. An
example of nested Miller compensation applied to three cascaded gain stagesis shown in Fig.
9.30a. Two noninverting gain stages arefollowed by an inverting gain stage. Each voltage-gain
stage is assumed to have a high-output resistance and therefore is labeled as a g,,, block. The
sign of the dc voltage gain of each stage is given by the sign of the transconductance. Two
Miller compensation capacitors are used: C,,1, which is placed around the last gain stage, and
Cu2, which is connected across the last two gain stages. Because the dc gain of the second
stage is positive and the dc gain of the third stage is negative, both capacitors are in negative
feedback loops.

A simplified circuit schematic is shown in Fig. 9.30b. Each noninverting gain stage is
composed of a differential pair with a current-source load. The inverting gain stage consists
of a common-source amplifier with a current-source load. A simplified small-signal model is
shown in Fig. 9.30c. The main simplification here is that all capacitances associated with the
gain stages are modeled by Co, C1, and Co.

Without the compensation capacitors, thisamplifier hasthreereal polesthat are not widely
spaced if the R; C; time constants are comparable. When C,,,1 isadded, the two polesassociated
with the output nodes of the second and third stages split apart along the real axis due to the
Miller compensation, but the pole associated with output of the first stage does not change.
From a design standpoint, the goal of this pole splitting is to cause one pole to dominate the
frequency response of the second and third stages together. Assume at first that this goal is
met. Then adding C,,» across the second and third stages is similar to adding C,,1 across the
third stage. Pole splitting occurs again, and the pole associated with the output node of the
first stage becomes dominant because the Miller-multiplied C,,2 loads this node. Meanwhile,
the pole associated with the output of the second stage moves to higher frequency because of
negative feedback through C,,2. The polarity of thisfeedback does not become positive at any
frequency where the gain around the loop is at least unity because the frequency response of
of the second and third stages is dominated by one pole.



9.4 Compensation 000

sz
|l
I
le
|l
I
+
Vin *+0mo — VY,
(€Y
) I1 Cre Iz I3
|l
I Cou

Vin

+ — _Ij?_‘ Ijl— |—<|: "

(b)

Vi \Z

a Vo
is = OmoVin RO% C, Ym\1 Rl% C;  ImV2 R, f C,

Figure 9.30 (a) Block diagram for athree-stage op amp with nested Miller compensation. (b) A
simplified schematic for such an op amp in CMOS. (c) A small-signal model.

In practice, the exact movement of the polesiscomplicated by the nondominant poleinthe
feedback loop though C,,2. Also, zeros are introduced by feedforward through C,,1 and Cj,2.
The pole and zero locations can be found from an exact analysis of the small-signal circuit.
The analysis can be carried out by summing currents at the outputs of the g,, generators, then
mani pulating the resulting three equations. These steps are not conceptually difficult but are
not shown here. The exact transfer function from the output of the current generator in the
input stage, i; = g,0Vin, to the output voltage v, is

vV, N
o __ (s) (9.56)
i D(s)
__ Rogm1R1gm2R2 — (8m1R1Cm1 + Cm2) RoR2s — RoR1R2Cm2(C1 + Cin1)s?
a 1+ ars + azs? + azs3
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where
a1 = K + Ro(Cim2 + Co) + gm1R18m2R2RoCrn2 (9.573)
az = R1R2(C2 + Cp1 + C2)(C1 + Cm1) — R1R2C2 | + Ro(Crz + Co)K
—gm1R1Cn1Cr2RoR2 — RoR2C2, (9.57b)
az = RoR1R2[(C2Cp2 4+ CoC2 + CoCn2)(C1 + Cp1) + C1Cn1Cim2
+ CoC1Cp1] (9.57¢c)
with
K = R2(C2 + Cin1 + C2) + R1(C1 + Ci1) + R1Cnigm2R2 (9.57d)

Equation 9.56 is the transfer function from i to v,,. The transfer function of the voltage
gain from vj, to v, is found by multiplying (9.56) by g0 (Since iy = gmoVin); therefore, the
voltage gain and (9.56) have the same poles and zeros. The transfer function in (9.56) has two
zeros and three poles. Let us first examine the poles. The expressions for the a; coefficients
are complicated and involve many terms. Therefore assumptions are needed to simplify the
equations. If g,,1 R1gm2R2 > 1, which isusually true, then

a1 ~ gm1R1gm2R2RoCp2 (9.58)
Assuming there is a dominant pole p1, then

1 1
At (9.59)
ai gm1R18m2R2RoCpi2

Another way to arrive at this estimate of p1 isto apply the Miller effect to C,,2. The effective
Miller capacitor isabout C,,2 timesthe negative of thegain across C,,,2, whichis g,,1 R1gm2 R>.
This capacitor appearsin parallel with Rg, giving atime constant of (g,,1 R1gm2R2)RoCyi2.

The other poles p, and p3 could be found by factoring the third-order denominator in
(9.56), which can be done using a computer but is difficult by hand. However, these poles can
be estimated from a quadratic equation under certain conditions. If there is a dominant pole
p1.then|pal, |psl > | pal. At high frequencies, where |s| > |p1| &~ 1/a1, we have |ais| > 1,
so the denominator in (9.56) can be approximated by dropping the constant “1” to give

D(s) ~ a1s + azs® + azs® = azs (1 + %254 a?’s2> (9.60)
a @

This equation gives three poles. One poleis at dc, which models the effect of the dominant
pole p1 for frequencies well above |p1]|. Poles p2 and p3 are the other roots of (9.60). They
can be found by concentrating on the quadratic term in parenthesisin (9.60), which is

D(s K
D=0 w1492 B (1 - Y)(1 - S) (9.61)
ais ai ail P2 P3
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Assuming that Rg, R1, R2 > |1/(gm2 — gm1)| @d C, is smal compared to the other
capacitors, (9.57b) and (9.57¢) ssimplify to

az ~ RoR1R2(gm2 — gm1)Cm1Cim2 (9.62)
az ~ RoR1R2(C1C2C 2 + C2Cp1Cmz2 + C1Cn1Cin2) (9.63)

Using (9.58), (9.62), and (9.63), the coefficientsin D'(s) are

% ~ 8m2 — gmlcml (964)
ail 8m18m?2

az  C1C2+ Cp1C1 + C2Cny (9.65)
a1 gm18m2 '

To ensurethat the high-frequency polesarein theleft half-plane (LHP), a2/a; must be positive
(see Appendix A9.2). Therefore, g,,2 must be larger than g,,,1. Poles p, and p3 can bereal or
complex, andingeneral the quadratic formulamust be used to solvefor these poles. However, if
thesepolesarereal and widely spaced and if C,,1 > C1, C2, then approximate expressionscan
befound. If | p2| < | psl, then —1/ p- isapproximately equal to the coefficient of sin D’(s), so

ai 8m18m?2

oAt = Smomes 9.66a)
P az (gm2 — &m1)Cm1 ( )
Also 1/(p2p3) isequal to the coefficient of s% in D'(s), so
3~ ﬂi - _ 8m18m?2 . (ng - gml)cml (966b)
as p2 C1C2 + Cp1C1 + CoCpy1 8m18m?2

_ _ (ng - gml)le ~ _gm2 — 8ml
C1C2 + Cpn1(C1+ C2) C1+ C2

The final approximation here follows if C,,1 islarge. Equations 9.66a and 9.66b are accurate
if |p2| < |p3l. Substituting (9.66a) and (9.66b) into this inequality produces an equivalent
condition

8m18m2 (ng - gml)cml
(gm2 — gm1)Cm1 ~ C1C2+ Cp1(C1+ C2)

If this condition is not satisfied, p2 and p3 are either complex conjugates or real but closely
spaced. C,,1 can aways be chosen large enough to satisfy the inequality in (9.67). While
it is possible to make the high-frequency poles real and widely separated, higher unity-gain
bandwidth may be achievable when p, and p3 are not real and widely separated.1®

In the simplified equations 9.66a and 9.66b, poles p, and p3 are dependent on C,,1 but
not on C,,2. In contrast, dominant pole p1 isinversely proportional to C,,2 and isindependent
of Cy,1. The poles can be positioned to approximate a two-pole op amp by making |p1| <
|p2] < | p3| and positioning | p3| well beyond the unity-gain frequency of the op amp.

The zero locations can be found by factoring the second-order numerator N(s) in (9.56).
The coefficients of sand s? in the numerator are negative and the constant term is positive. As
aresult, the zeros are real. One is positive and the other is negative, as is shown in Appendix
A9.2.

Thezeroswill befound using some simplifying assumptions. First, the numerator of (9.56)
can be rewritten as

|p2| ~ ~ | p3l (9.67)

Cim1 Cm2 ) _ 2 Cn2(C1+ C1) (9.68)

N(s) = RogmiR1gm2R2 {1 -5 ( +
gm2  &miRigm2 &m18&m?2
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Assuming that C,,1 > C1 and Cp1 > Cri2/(gm1R1), then

Cm1 . S2 CmZle:|
8m2 8m18m2
The zeros are the roots of N(s) = 0. Using the quadratic formula and (9.69), the zeros are

N(s) ~ Rogm1R18m2R2 [1 - (9.69)

2
__8&m1 gm1 gmi8m2 _  &ml N Agm2Cm2

2= 2C 2 B \/(2Cm2> * Cin1Cm2 B 2Cm2 (1 B b &m1Cm1 ) (970)
Taking the positive square root in the right-most formulain (9.70) yields avalue that islarger
than one. Adding this value to 1 gives a positive value for the term in parentheses; subtracting
thisvalue from 1 gives a negative quantity with a smaller magnitude than the sum. Therefore,
one zero isin the LHP and has a magnitude greater than g,,1/(2C,,2). The other zero isin the
RHP and has a smaller magnitude than the LHP zero. As aresult, the effect of the RHP zerois
felt at alower frequency than the LHP zero.

The magnitude of one or both zeros can be comparable to | p2|. Because the RHP zero is
at alower frequency than the LHP zero, the RHP zero can cause significant negative phase
shift for frequencies at or below | p»|, which would degrade the phase margin of a feedback
loop. Thisundesired negative phase shift would not occur if the transfer function did not have
zeros. Unfortunately, the three techniques considered in Section 9.4.3 to eliminate aRHP zero
have important limitations in a low-supply application. First, the zeros could be eliminated
by adding a source-follower buffer between the op-amp output and the right-hand side of
capacitors C,,1 and C,,2 (asin Fig. 9.21), thereby eliminating the feedforward paths through
the capacitors. However, the source follower has a nonzero dc voltage between its input and
output. This voltage may limit the op-amp output swing to an unacceptably low value in a
low-power-supply application. Second, cascode stages could be used to eliminate the zeros, as
shown in Fig. 9.23. However, the requirement that all transistors in the cascode stage operate
in the active region may limit the minimum supply voltage. Finally, a series zero-canceling
resistance (as in Fig. 9.24a) implemented with a transistor may require a large gate voltage
that exceeds the power supply.

The NE5234 op amp uses nested Miller-effect compensation. Figure 9.31 repeats the
simplified ac schematic of the high-frequency gain path of the NE5234 shown in Fig. 7.36.
Here, the common-mode input voltage is assumed to be low enough that Q1 and Q2 in
Fig. 6.36 are off. Also, the dc load current is assumed to be I;, = 1 mA asin the calculations
in Chapter 6. Therefore, Q75 in Fig. 6.39 conducts a nearly constant current and is omitted in
Fig. 9.31 along with the circuits that control it for simplicity. In practice, these transistors are
important under other bias conditions. Also, note that the transconductance of the output stage
depends on the bias point assumed. The key point here is that this op amp uses three nested
compensation loops: through C22, Cas, and Cgs. Theloop through Cos includes series resistor
Ros = 1.3 k2 to reduce the effects of the zero introduced through C2s and increase the phase
margin.1” This structure has one more level of nesting than shown in Fig. 9.30. The extralevel
isintroduced through Ces in the third stage, and its purpose is explained next.

Chapter 6 pointed out that the output transistors Q74 and Qs in Fig. 6.39 are driven by
emitter followers to increase the current gain of the output stage and reduce its load on the
second stage. Because the integrated-circuit processis optimized to build much higher quality
npn transistors than pnp transistors, B,,,, < Bupn iN practice. To provide adequate current gain
when Q74 controls the output as shown in Fig. 9.31, two emitter followers Qgs-Qgs drive
0Q74. In contrast, Fig. 6.39 shows that only one emitter follower Qgg is used to drive Q7s.
Furthermore, Qg4 and Qg5 Use opposite polarity transistors to avoid introducing a large dc
level shift that would increase the minimum required power-supply voltage.
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Figure 9.31 An ac schematic of the high-frequency gain path of the NE5234 op amp assuming that the
common-mode input voltage is low enough that 0, and Q» in Fig. 6.36 are off and assuming that Qs
in Fig. 6.39 conducts a constant current and can be ignored along with the elements that driveit.

Ideally, these emitter followers give unity gain and do not limit the frequency response
of the third stage. In practice, however, they introduce extra poles that contribute unwanted
phase shift at high frequency that reduces the phase margin when the op amp is connected in a
feedback loop. This problem isespecially severein driving Q74 because two emitter followers
areused instead of one and becausethe output transi stor and one of the emitter followersare pnp
transistors, which have much lower f7 than npn transi stors operating at the same bias currents.
If Miller compensation were not applied through Cgs, the presence of the extra poles in the
output stage due to the emitter followers would introduce extra undesired phase shift near the
unity-gain frequency of the op amp and significantly reducethe phase margin. To overcomethis
problem, the extralevel of Miller-effect compensation through Cgs isintroduced. It forcesone
pole to be dominant in the output stage when feedback is applied through C2s. The minimum
required value of Cgs must be able to cope with al possible bias currents in the output stage.
From a stability standpoint, the worst case is when the bias current and transconductance of
Q74 are maximum because the op-amp bandwidth is increased in this case, which increases
the importance of poles introduced by the emitter followers. In practice, Ces is chosen from
simulations to be 10 pF.1” The corresponding capacitor on the npn side of the output stage is
Ces in Fig. 6.39, and this capacitor isonly 1 pF. In practice, Cgg < Cgs because the npn side
uses only one emitter follower and because the transistors on this side are both npn transistors.
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Figure 9.32 Gain and phase versus frequency for the NE5234 op amp from SPICE.

The presence of an extralevel of Miller compensation reduces the bandwidth of the output
stage to make one pole dominant. Although it allows a simple compensation scheme for the
op amp, it aso limits the high-frequency performance of the op amp with compensation.

Asshown in Chapter 7, the frequency response of the NE5234 is dominated by the Miller
multiplied Ca,. With unity-gain feedback asin Fig. 6.3c, the resulting gain and phase plots for
the NE5234 are shown in Fig. 9.32. These plots were generated using SPICE with transistor
parameters as shown in Fig. 2.32 except Bz = 40 and V4 = 30 V for npn transistors and
Br =10and V4 = 20V for pnp transistors. The bias conditions are the same as assumed in
Chapter 6. The resulting unity-gain frequency is 2.7 MHz, and the phase margin is 43 degrees.
Return ratio simulations give the same results.

Fig. 9.33a shows another technique for eliminating a RHP zero that can be used with
cascaded stagesin alow-supply application.'6-18 Two gain stagesand one Miller compensation
capacitor are shown. A transconductance stage, g, isincluded. It provides afeedforward path
that can be used to move the zero to infinity. The small-signal circuit isshownin Fig. 9.33b. To
allow a simple explanation of this circuit, initially assume that C1 = C2 = 0. The circuit has
one poledueto C,, and one zero due to the feedforward current through C,, . If the zero moves
to infinity, the total forward current must go to zero when w — oo. Also, if the zero movesto
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Figure 9.33 (a) Block diagram of atwo-stage op amp with Miller compensation and afeedforward
transconductor. (b) A small-signal model.

infinity, the output voltage will go to zero as w — oo dueto the polein the transfer function.
When o — oo, capacitor C,, becomes a short circuit, so vo = 0 when w — oo. Therefore
at infinite frequency, the current g,,1v1 from the g,,1 source flows through C,,. Adding this
feedforward current to the current g,,v1 from the g, generator givesthe total current at the
output node that is related to vy

iff(w = 00) = (=gm1 + gmfIV1 (9.71)

If ¢mr = gm1, thiscurrent equals zero, which means the zero is at infinity.
An exact analysis of the circuit in Fig. 9.33 gives atransfer function

Vo

v

— (9.72)
—8m1R18m2R2 — gmfR2 — SR1R2[gmf(C1+ Cin) — gm1Ci)
1+ s[gm2R1R2CH + R2(C2 + Cy) + R1(C1 4 Cim)] + s°R1R2(C1C2 + C1Cpy + C2Cp)

The zero can be moved to infinity by choosing g, so that the coefficient of sinthe numerator
is zero, which occurs when

Cm 8m1l
= = 9.73
8mf = &ml Ci+C, 1 ( )

This value of g,,; depends on the ratio of an internal parasitic capacitance C1, which is not
well controlled, and compensation capacitor C,,. Using g,y = gm1 Moves the zero into the
LHPto about —g,,2/ C1; the magnitude of this zero is usually above the unity-gain frequency
of the op amp. If the g,,1 stage has adifferential input, the —g,,, Stage can be realized using a
replica of the g,,1 stage with the inputs reversed to change the sign of the transconductance.
This zero-cancellation scheme can be used repeatedly in athree-stage op amp to eliminate
the zeros, as shown in Fig. 9.34a. A small-signal model is shown in Fig. 9.34b. Analysis of
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Figure 9.34 (a) Block diagram of athree-stage op amp with nested Miller compensation and two

feedforward transconductors. (b) Small-signal model.
this circuit gives a voltage gain of

Vo _ Ra(no+nis+ n2s?)

Vin 14 b1s + bas? + bas®
where b1-b3 arerelated to a1-az in (9.57) by

b1 = a1+ gmr1RoR2Cm2
by = a2 + gmr1RoR1R2(C1 + Cin1)Cri2
b3 = a3
and the coefficients in the numerator are
no = —gmo&m18m2RoR1 — &mfo — &mo&mf1Ro
gmo(gm1 — &mf1) ROR1Cm1 + (8m0 — &mro) RoCim2
—8gmfoR1(C1+ Cm1) — gmroR0Co — gmogmr1RoR1C1

ni

n2 = (gmo — &mr0)RoR1(C1 + Cp1)Cim2 — gmroRoR1(C1 + Cpu1)Co

(9.74)

(9.753)
(9.75b)
(9.75¢)

(9.763)

(9.76b)
(9.760)

Thecoefficientsof sand s inthenumerator includeboth positiveand negativeterms. Therefore,
they can be set to zero, which eliminates the zeros, by properly choosing g ro and g r1. As
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in (9.73) above, these values depend on parasitic capacitances Co and C1, which are not well
controlledin practice. An alternative choiceisto set g,,r0 = gmo and gnr1 = gm1. When these
values are substituted into (9.76a)—(9.76¢), ng, n1, and ny are negative. Therefore, both zeros
areinthe LHP (see Appendix A9.2), and the RHP zero has been eliminated.

With g, r1 = gm1 and g, r0 = gmo, the term added to ay in (9.75a) is small compared to
thedominant terminag, whichis g,,1 R1gm2R2RoCri2, if gm2R1 > 1. Therefore b1 ~ ay, and
the dominant pole p1 is still given by (9.59). However, b, can be significantly different from
ay, and therefore p, and p3 will be different from the values given by (9.66a) and (9.66b). The
new values of the high frequency poles can be found by solving the quadratic equation that
results when b1-b3 are substituted for aj-az in (9.60).

The selection of the nested Miller compensation capacitors is complicated because the
values of two compensation capacitors must be chosen, and they affect the pole and zero
locations. The compensation capacitors can be chosen with the aid of a computer to achieve a
particular settling-time or phase-margin goal in afeedback application. Computer optimization
can be carried out on the closed-loop transfer function based on the op-amp transfer function or
ontheloop gain or return ratio, if the small-signal model parameters are known. Alternatively,
the capacitor val ues can be estimated using approximations and the equations presented above.
Then SPICE simulations can be run on the transistor circuit starting with the initial estimates
of the compensation capacitors and varying the capacitors by small amounts to determine the
best values. This approach is used in the following example.

EXAMPLE

Design the 3-stage op amp in Fig. 9.34 to give alow-frequency gain of 86 dB and 45° phase
margin for unity feedback (f = 1) when driving a5 pF load. Compensate the op amp so that
al the poles are real and widely spaced. To simplify this example, assume that the output
resistance of each stageis5 k<2 and theinternal node capacitances Co and C1 are each 0.05 pF.
Determine the compensation capacitors and the transconductances for the op amp.

The feedforward transconductances g,,ro and g,,r1 Will be used to move the zeros to
well beyond the unity-gain frequency. To simplify the design equations, let g, 0 = gmo and
gmf1 = &m1, based on (9.73)—9.76) and the assumption that Co and C; are small compared
to C,,1 and Cp2.

When g,,r0 = gmr1 = 0, the coefficients a; of the denominator of the transfer function
are given by (9.57). With nonzero g, o and g, r1, however, the coefficients of s and s2inthe
denominator of the transfer function change and are given by (9.75). From (9.75c¢), b3 = as.
Also, as noted in the text following (9.76), the term added to a1 in (9.75a) is small compared
to a1, SO b1 &~ aj and p; is given by (9.59). Hence, poles p> and p3 are changed due to the
added term that includes g,,#1 in b2 in (9.75b). Assuming C1 < Cp,1, (9.75b) reduces to

by ~ az + gmf1RoR1R2C11Cn2

Substituting the approximate expression for a; in (9.62) and using g,,r1 = gm1, this equation
becomes

by ~ g2 RoR1R2C,,1Cp2

Following the analysis from (9.60) to (9.67), we find

b1 8m1
N R 9.77a)
p2 5 . (9.778)
b1 1
pa~ 2=~ _Bm2 (9.77b)
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To satisfy | p2| < |p3l, let | p3] = 10| p2|. Substituting (9.77) in this equality and rearranging
yields
8m1l
8m?2
To ensure that C,,,1 isnot much larger than Co = 5 pFweneed g,,1/gm2 < 11n(9.78). Here,
we chose g,,1/gm2 = 0.2. Substituting this valueinto (9.78) gives

Cu1 = 10(0.2)(5 pF) = 10 pF

With widely spaced poles, placing |p2| a the unity-gain frequency gives a 45° phase
margin. Since |gain| x frequency is constant for frequencies between |p1| and |p2|, we can

le =10

C2 (9.78)

write
laol - |pal =1-|p2l (9.79)
where
laol = gmoRogm1R18m2R2 (9.80)
is the low-frequency gain. Substitution of (9.59), (9.77a), and (9.80) into (9.79) gives
&m0 _ 8m1l
Cin2 Cm1

If the first two gain stages are made identical to reduce the circuit-design effort, g,,0 = gm1,
and the last equation reduces to

Cu2=Cn1=10 pF

Now the transconductances can be found from the low-frequency gain requirement and (9.80),

3
laol = gmoRogm1R1gm2R2 = %(5 k)® = 20,000 = 86 dB

since gmo = gm1 = 0.2g,2 has been selected. Solving gives g1 = gm0 = gmf1 = gmro =
3.2mA/V and g2 = g,1/0.2 = 16 MA/V.

SPICE simulation of this op amp gives a dc gain of 86.3 dB and a phase margin of
52 degrees with a unity-gain frequency of 40 MHz. These values are close enough to the
specificationsto illustrate the usefulness of the calculations. The polelocationsare | p1| /27t =
2.3kHz, | p2|/2n =59 MHz, and | p3| /27 = 464 MHz. The zero locations are complex with a
magnitude much larger than the unity-gain frequency, at z1,2/27r = —345MHz = j1.58 GHz.
Running simulations with slight changes to the compensation capacitors, we find that using
Cm1 = 10.4 pF and C,,2 = 8.3 pF gives a phase margin of 47 degrees with a unity-gain

] frequency of 45 MHz.

9.5 Root-Locus Techniques''?

To this point the considerations of this chapter have been mainly concerned with calculations
of feedback amplifier stability and compensation using frequency-domain techniques. Such
techniques are widely used because they allow the design of feedback amplifier compensation
without requiring excessive design effort. The root-locus technique involves calculation of
the actual poles and zeros of the amplifier and of their movement in the s plane as the low-
frequency, |oop-gain magnitude Ty ischanged. Thismethod thus gives moreinformation about
the amplifier performance than is given by frequency-domain techniques, but also requires
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more computational effort. In practice, some problems can be solved equally well using either
method, whereas othersyield more easily to one or the other. The circuit designer needsskill in
applying both methods. Theroot-locustechniquewill befirstillustrated with asimpleexample.

9.5.1 Root Locus for a Three-Pole Transfer Function

Consider an amplifier whose transfer function has three identical poles. The transfer function

can be written as
ao

where ag is the low-frequency gain and |p1]| is the pole magnitude. Consider this amplifier
placed in a negative-feedback loop asin Fig. 9.1, where the feedback network has a transfer
function f, which isaconstant. If we assume that the effects of feedback |oading are small, the
overall gain with feedback is

a(s) = (9.81)

a(s)
Als) = ———— 9.82
O =1 ue; (9.82)
Using (9.81) in (9.82) gives
ao
)
_ P1 _ ao
A(s) = aof = 3 (9.83)
G\ 3 <1 — ) + To
()
p1
where Tp = ag f isthe low-frequency loop gain.
The poles of A(s) are the roots of the equation
3
(1 . S) Y To=0 (9.84)
P1
That is
3
(g -
p1
and thus

S 600 _ane
1- —=¥-Tp=-3 To or J Toejeo or < Toe J60
P1

Thus the three roots of (9.84) are
s1=p1 (1 + «?/To)
s2 = p1 (1 — \S/Toejsoo) (9.85)
s3=p1 (1 - 3/7067’600)

These three roots are the poles of A(s) and (9.83) can be written as
ag 1

RECRICHIE

A(s) = (9.86)
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amplifier with three identical poles
in 7(s).

\ Figure 9.35 Root locus for afeedback

The equationsin (9.85) alow calculation of the poles of A(s) for any value of low-frequency
loop gain Typ. For To = 0, al three polesareat p1 asexpected. As Ty increases, one pole moves
out along the negative real axiswhile the other two leave the axis at an angle of 60° and move
toward the right half-plane. The locus of the roots (or the root locus) is shown in Fig. 9.35, and
each point of this root locus can be identified with the corresponding value of Tp. One point
of significance on the root locus is the value of Ty at which the two complex poles cross into
theright half-plane, asthisisthe value of loop gain causing oscillation. From the equation for
52 1n (9.85), thisis where Re(s2) = 0, from which we obtain

1 — Re(JToe’®) = 0
That is,
JTocos60° = 1
and
o =8

Thus, any amplifier with threeidentical polesbecomesunstablefor low-frequency loop gain Tp

greater than 8. Thisis quite arestrictive condition and emphasizes the need for compensation

if larger values of Ty are required. Note that not only does the root-locus technique give the

value of Ty causing instability, it also allows calculation of the amplifier poles for values of

Ty < 8, and thus allows calculation of both sinusoidal and transient response of the amplifier.
The frequency of oscillation can be found from Fig. 9.35 by calculating the distance

wo = |p1|tan60° = 1.732| p1| (9.87)

Thus, when the poles just enter the right half-plane, their imaginary part has a magnitude
1.732| p1| and this will be the frequency of the increasing sinusoidal response. That is, if the
complex poles are at (o + jwg) where o is small and positive, the transient response of the
circuit containsaterm Ke°’ sin wot, which represents agrowing sinusoid. (K isset by aninitial
condition.)

Itisuseful tocalculatethevalueof Ty causinginstability inthiscaseby usingthefrequency-
domain approach and the Nyquist criterion. From (9.81) the loop gainis

aof To

jo \* 2%
k) o)
| p1l | p1l

T(jow) = (9.88)
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Figure 9.36 Magnitude and phase of T'(jw) for afeedback amplifier with three identical polesin T'(s).

The magnitude and phase of T'(jw) asafunction of » are sketched in Fig. 9.36. The frequency
w180 Where the phase shift of T'(jw) is —180° can be calculated from (9.88) as

180° = 3 arctan &0
|1l
and this gives
w1go = 1.732| p1| (9.89)
Comparing (9.87) with (9.89) shows that
w180 = Wo (9.90)
The loop-gain magnitude at w1gg can be calculated from (9.88) as
T T
IT(jw10)] = —— 5 = 2 (9.92)
(0180 8
1+j—
|1l

using (9.89). The Nyquist criterion for stability indicates it is necessary that |T'(jwigo)| < 1.
Thisrequiresthat 7o < 8, the same result as obtained using root-locus techniques.

9.5.2 Rules for Root-Locus Construction

In the above simple example, it was possible to calculate exact expressions for the amplifier
poles as a function of Ty, and thus to plot the root loci exactly. In most practical cases this
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is quite difficult since the solution of third- or higher order polynomial equationsis required.
Conseguently, rules have been devel oped that alow theroot loci to be sketched without requir-
ing exact calculation of the pole positions, and much of the useful information is thus obtained
without extensive calculation.

In general, the basic-amplifier transfer function and the feedback function may be
expressed as aratio of polynomiasin s.

1+ ais+ aps®+ - -
= 9.92
Cl(s) aol+b1s+b252+"' ( )
This can be written as
Na(s)
= 9.93
a(s) = a0y’ 3 (9.93)
Also assume that
1+ c1s+cos?+ -
s) = 9.94
1) fol +dis + dps? + - - - ( )
This can be written as
Ng(s)
f()=fo (9.95)
D (s)

Loading produced by thefeedback network onthebasic amplifier isassumedto beincluded
in (9.92). It isfurther assumed that the low-frequency loop gain ag fo can be changed without
changing the poles and zeros of a(s) or f(s).

The overal gain when feedback is applied is

B a(s)
A@_fgamj (9.96)
Using (9.93) and (9.95) in (9.96) gives
_ aONa(S)Df(S)
A = D )Da(s) + ToNalIN ) (690
where
To = aofo (9.98)

is the low-frequency loop gain.
Equation 9.97 showsthat the zeros of A(s) arethe zeros of a(s) and the polesof f(s). From
(9.97) it is apparent that the poles of A(s) are the roots of

D ¢(5)Du(s) + ToNu(s)N¢(s) =0 (9.99)

Consider the two extreme cases.
(8) Assume that there is no feedback and that 7o = 0. Then, from (9.99), the poles of a(s)
are the poles of a(s) and f(s). However, the poles of f(s) are also zeros of A(s) and these

cancel, leaving the poles of A(s) composed of the poles of a(s) as expected. The zeros of
A(s) are the zeros of a(s) in this case.

(b) Let To — oo. Then (9.99) becomes
Na(s)Ns(s) =0 (9.100)

This equation shows that the poles of A(S) are now the zeros of a(s) and the zeros of f(s).
However, the zeros of a(s) are also zeros of A(s) and these cancel, leaving the poles of A(S)
composed of the zeros of f(s). The zeros of A(s) are the poles of f(s) in this case.
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Rule 1. The branches of the root locus start at the poles of T'(s) = a(s) f(s) where To = 0,
and terminate on the zeros of T'(s) where Tp = oo. If T(s) has more poles than zeros, some of
the branches of the root locus will terminate at infinity.

Examplesof loci terminating at infinity are shownin Figs. 9.3 and 9.35. Morerulesfor the
construction of root loci can be derived by returning to (9.99) and dividing it by D ¢(s) D(s).
Poles of A(s) are roots of

Nal) Ns(s) _
ODu(s) Ds(s)
Thatis

Na(s) Ny(s)
ODuls) Ds(s) —

The complete expression including poles and zerosis

o) 2) (- 2) )

To - . . : =-1 (9.101)
) ) 6
Pal Pa2 Pr1 pPr2
where
Zals Za2 -+ - arezerosof a(s)
751, 2f2 - - - arezerosof f(s)
Pal, Pa2 - - - arepolesof a(s)
Pf1, pr2- - arepolesof f(s)
Equation 9.101 can be written as
TO(_pal)(_PaZ) o (=pr)=pr2)---
(—za1)(=za2) - - - (—zr1)(=2f2) - - -
(s —za)(s —za2) - (s —zp1)(s —2p2) -+ 1 (9.102)

(s = pa)(s — pa2) -+ (s — pyi)(s — py2) -+

If the poles and zeros of a(s) and f(s) arerestricted to the left half-plane [this does not restrict
the polesof A(s)], then —p,1, — pa2, @nd so on are positive numbers and (9.102) can be written

0|pal| “|pa2l - |psal - Ipgal--- y (s = 2za1)(s —2a2) - -- (s = 2p)(s = 2f2) - -+ _
|za1l - 1za2l - -~z g1l - lzp2l -+ (5= paa)(s — pa2) - (s — pr1I)(s — py2) - -~
(9.103)

-1

Valuesof complex variable ssatisfying (9.103) are polesof closed-loop function A(s). Equation
9.103 requires the fulfillment of two conditions simultaneously, and these conditions are used
to determine points on the root locus.

The phase condition for values of s satisfying (9.103) is

[S = Zal+[s —zagp---+ [STEfL+[S L2 4

—([S=Pal+[S=Pa2---+ [S— P+ [S—Pf2---)=(2n—Ln  (9.104)
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Figure 9.37 Poles and zeros of loop gain 7 (s) of afeedback amplifier. Vectors are drawn to the point X
to determineif this point is on the root locus.

The magnitude condition for values of s satisfying (9.103) is

|pa1l - |pa2l - |psil - Ipral- -+ IS — zaal - Is — za2l - -+ Is — zpal - Is — zp2] - - _
|Za1l - |za2| - - |z fal - 1z 2l -+ IS — pail - | — pa2l -+ |s — pral - Is — pgal - -+
(9.105)

Consider an amplifier with polesand zeros of T'(s) asshownin Fig. 9.37. In order to determine
if some arbitrary point X is on the root locus, the phase condition of (9.104) is used. Note that
the vectors of (9.104) are formed by drawing lines from the various poles and zeros of T'(s) to
the point X and the angles of these vectors are then substituted in (9.104) to check the phase
condition. Thisisreadily done for points Y and Z on the axis.

AtY
[SY_Zl =0°
Sy —p1=0°

and so on. All angles are zero for point Y and thus the phase condition is not satisfied. Thisis
the case for al pointsto the right of p1.

Atz
[sz=71 = O°
[Sz — P1 = 180°
[Sz — P2 = O°
[Sz —P3 = O°
[SZ — P4 = O°

In this case, the phase condition of (9.104) is satisfied, and points on the axis between p1 and
p2 are on the locus. By similar application of the phase condition, the locus can be shown to
exist on the real axis between p3 and z1 and to the left of pa.

In generdl, if T(s) has al its zeros and poles in the LHP, the locus is situated along the
real axis where there is an odd number of poles and zeros of T'(s) to the right. In some cases,
however, all the zeros of T'(s) are not in the LHP. For example, an op amp that uses Miller
compensation can have a RHP zero in a(s) and thereforein T'(s). If a(s) has at least one RHP
zero, at least one of the —z,; termsin (9.102) is negative, rather than positive as assumed in
(9.103). If the number of RHP zeros is even, an even number of —z,; terms that are negative
appear in the denominator of (9.102). The product of these negative terms is positive, and
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therefore (9.103) and (9.104) remain correct. However, if the number of RHP zeros is odd,
the product of the —z,; termsin (9.102) is negative. As a result, a minus sign appears on the
left-hand side of (9.103) that causes a 7 term to be added on the left side of (9.104). This
change to the phase condition is reflected in the following rule.

Rule 2. If T(s) has dl its zeros in the LHP or if T(s) has an even number of RHP zeros,
the locus is situated along the real axis wherever there is an odd number of poles and zeros
of T(s) to the right. However, if T'(s) has an odd number of RHP zeros, the locus is situ-
ated along thereal axiswherever thereisan even number of polesand zerosof T'(s) to theright.

Consider again the situation in Fig. 9.37. Rule 1 indicates that branches of the locus must
start at p1, p2, p3, and ps. Rule 2 indicates that the locus exists between p3 and z1, and thus
the branch beginning at p3 ends at z1. Rule 2 aso indicates that the locus exists to the left of
pa, and thusthe branch beginning at p4 moves out to negativeinfinity. The branches beginning
at p1 and po must also terminate at infinity, which is possible only if these branches break
away from thereal axis as shown in Fig. 9.38. This can be stated as follows.

Rule 3. All segments of loci that lie on the real axis between pairs of poles (or pairs of
zeros) of T(s) must, at some internal break point, branch out from the real axis.

The following rules can be derived.?°

Rule 4. Thelocusissymmetrical with respect to thereal axis (because complex roots occur
only in conjugate pairs).

splane

Py 4 P3

N\

Figure 9.38 Root-locus construction for the poles and zeros of Fig. 9.37.
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Rule 5. Branches of the locus that leave the real axis do so at right angles, asillustrated in
Fig. 9.38.

Rule 6. If branches of thelocusbreak away from thereal axis, they do so at apoint wherethe
vector sum of reciprocals of distancesto the poles of 7'(s) equal s the vector sum of reciprocals
of distancesto the zeros of T'(s).

Rule 7. If T(s) has no RHP zeros or an even number of RHP zeros, branches of the locus
that terminate at infinity do so asymptotically to straight lines with angles to the real axis of
[(2n — D)n]/(Np, — N;)forn =0,1,..., N, — N, — 1, where N, isthe number of polesand
N, isthe number of zeros. However, if T(s) has an odd number of RHP zeros, the asymptotes
intersect the real axis at angles given by (2nm)/(N, — N).

Rule 8. The asymptotes of branches that terminate at infinity all intersect on the real axis at
apoint given by

_ >_[polesof T(s)] — > _[zeros of T(s)]
B N, — N,

(9.106)

a

A number of other rules have been devel oped for sketching root loci, but those described
above are adequate for most requirements in amplifier design. The rules are used to obtain a
rapid ideaof the shape of theroot locusin any situation, and to calculate amplifier performance
insimplecases. Moredetailed cal cul ation on circuits exhibiting complicated pol e-zero patterns
generally require computer calculation of the root locus.

Notethat theaboverulesareall based on the phase condition of (9.104). Oncethelocushas
been sketched, it can then be calibrated with values of low-frequency loop gain Ty calculated
at any desired point using the magnitude condition of (9.105).

The procedures described above will now be illustrated with examples.

[ ] EXAMPLE

In Section 9.5.1 the root locus was calculated for an amplifier with three identical poles. This
example was chosen because it was analytically tractable. Now consider amore practical case
wherethe amplifier hasthree nonidentical polesand resistive feedback isapplied. It isrequired
to plot the root locus for this amplifier as feedback factor f is varied (thus varying Tp), and it
is assumed that variations in f do not cause significant changes in the basic-amplifier transfer
function a(s).

Assume that the basic amplifier has a transfer function

100

a(s) = (1-2) (1-2) (a-2)

p1 = —1x 10° rad/s
p2 = —2 x 10° rad/s
p3 = —4 x 10° rad/s

(9.107)

where

Since the feedback circuit is assumed resistive, loop gain 7'(s) contains three poles. The root
locusis shown in Fig. 9.39, and, for convenience, the numbers are normalized to 106 rad/s.
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splane x 10° rad/sec

Figure 9.39 Root-locus example for polesof T(s) at —1 x 10°, —2 x 105, and —4 x 10° rad/s.

Rules 1 and 2 indicate that branches of the locus starting at poles p; and p» move toward
each other and then split out and asymptote to infinity. The branch starting at pole p3 moves
out along the negative real axisto infinity.

The breakaway point for the locus between p1 and p2 can be calculated using rule 6. If
o; isthe coordinate of the breakaway point, then

1 n 1 n 1 .
o +1 o;+ 2 (Ti+4_

(9.108)

Solving thisquadratic equation for o; giveso; = —3.22 or —1.45. Thevalue —1.45isthe only
possible solution because the breakaway point lies between —1 and —2 on the real axis.

The angles of the asymptotesto the real axis can be found using rule 7 and are = 60° and
180°. The asymptotes meet the real axis at a point whose coordinate is o, given by (9.106),
and using (9.106) gives

(-1-2-49-0
Oy =—"-—""

3
When these asymptotes are drawn, thelocus can be sketched asin Fig. 9.39 noting, fromrule 5,
that the locus leaves the real axis at right angles. The locus can how be calibrated for loop
gain by using the magnitude condition of (9.105). Aspects of interest about the locus may be
the loop gain required to cause the poles to become complex, the loop gain required for poles

with an angle of 45° to the negative real axis, and the loop gain required for oscillation (right
half-plane poles).

=-233
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Consider first theloop gain required to cause the polesto become complex. Thisisapoint
onthelocusonthereal axisat o; = —1.45. Substituting s = —1.45in (9.105) gives

1x2x4

= 9.109
00.45 x 0.55 x 2.55 (6.109)
where
Ipal =1 |p2| =2 Ip3l =4
|s — p1| = 0.45 |s — p2| = 0.55 |s — p3| = 2.55
and

s = —1.45 at the point being considered

From (9.109), Tp = 0.08. Thus a very small loop-gain magnitude causes poles p1 and p» to
come together and split.

Theloop gain required to cause right half-plane poles can be estimated by assuming that
the locus coincides with the asymptote at that point. Thus we assume the locus crosses the
imaginary axis at the point

j2.33tan60° = 4.0;
Then the loop gain at this point can be calculated using (9.105) to give

1x2x4

To— 77 g 9.110
%41x45x57 (9.110)

where
|s—pil=41 |s—p2| =45 |s— p3| =57
and
s = 4j at this point on the locus

From (9.110), Tp = 13.2. Since ag = 100 for this amplifier [from (9.107)], the overall gain of
the feedback amplifier to 7o = 13.2is

ao

Ag = —7.04
0 1+ Ty
and
T
f=="-0132
ap

The loop gain when the complex poles make an angle of 45° with the negative real axis
can be calculated by making the assumption that this point has the same real-axis coordinate
as the breakaway point. Then, using (9.105) with s = (—1.45 + 1.45;), we obtain

1x2x4 B
9152 x 1.55x 2.93

and thus
Tpo = 0.86
Finally, theloop gain required to move the locus out from pole p3 isof interest. When the
real-axis poleisat —5, the loop gain can be calculated using (9.105) with s = —5to give

1><2><4_
le3x4_
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That is,
To=15
When thispoleisat —6, theloop gainis
1x2x4
02x4x5 "
and thus
To=5

These values are marked on the root locus of Fig. 9.39.
In thisexample, it is useful to compare the prediction of instability at 7o = 13.2 with the
results using the Nyquist criterion. The loop gain in the frequency domain is

To

) = 1+jw 14 jow 14 Jow
106 2 x 106 4 x 108

A seriesof trial substitutions showsthat £/ 7'(jw) = —180° for v = 3.8 x 106 rad/s. Notethat
this is close to the value of 4 x 106 rad/s where the root locus was assumed to cross the jo
axis. Substitution of w = 3.8 x 10° in (9.111) gives, for the loop gain at that frequency,

(9.111)

. To
IT(jo)| = 116 (9.112)
Thus, for stability, the Nyquist criterion requiresthat 7o < 11.6 and thisis close to the answer
obtained from the root locus. If the point on the jw axis where the root locus crossed had
been determined more accurately, it would have been found to be at 3.8 x 10° rad/s, and both
methods would predict instability for 7o > 11.6.

It should be pointed out that the root locus for Fig. 9.39 shows the movement of the poles
of the feedback amplifier as Tp changes. Thetheory developed in Section 9.5.2 showed that the
zeros of the feedback amplifier arethe zeros of the basic amplifier and the poles of the feedback
network. In this case there are no zeros in the feedback amplifier, but this is not always the
case. It should be kept in mind that if the basic amplifier has zerosinitstransfer function, these
may be an important part of the overall transfer function.

Therulesfor drawing aroot locus were presented for varying Ty, assuming that the poles
and zeros of a(s) and f(s) do not change when Ty changes. This assumption is often not valid
in practice, since changing the circuit to change To = ag f usually affects at least some of the
poles and zeros. Alternatively, these rules can be used to draw a root locus of the poles of a
transfer function asthe value x of an element in the circuit changesif the closed-loop gain A(s)
can be written in the form

M(s)
G(s) + xH(s)

where M(s), G(s), and H(s) arepolynomialsins, and G(s) and H(s) are not functionsof x. The
poles of A(s) are the roots of G(s) = 0 when x = 0 and the roots of H(s) = 0 when x — oo.
Theroots of G(s) = 0 are the starting points of the root locus, and the roots of H(s) = 0 are
the ending points of the root locus. The complete locus for al values of x can be drawn by
following the rules given in this section. For example, this approach could be used to plot a
locus of the poles of the transfer function in (9.27) as the compensation capacitor C varies. (In
thiscase, x = C.)

A(s) = (9.113)
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splane

Figure 9.40 Root locusfor an
op amp with two polesinits
transfer function. The feed-
back is assumed resistive.

9.5.3 Root Locus for Dominant-Pole Compensation

Consider an op amp that has been compensated by creation of a dominant pole at p1. If we
assume the second most dominant poleis at p> and neglect the effect of higher order poles,
the root locus when resistive feedback is applied is as shown in Fig. 9.40. Using rules 1 and 2
indicates that the root locus exists on the axis between p; and p», and the breakaway point is
readily shown to be

pP1+p2
O = —(—
2
using rule 6. Using rules 7 and 8 shows that the asymptotes are at 90° to the real axis and meet
the axis at o;.

As Ty isincreased, the branches of the locus come together and then split out to become
complex. As Ty becomes large, the imaginary part of the poles becomes large, and the circuit
will then have ahigh-frequency peakinitsoverall gain function A(jw). Thisis consistent with
the previous viewpoint of gain peaking that occurred with diminishing phase margin.

Assume that maximum bandwidth in thisamplifier isrequired, but that little or no peaking
isalowed. This means that with maximum loop gain applied, the poles should not go beyond
the points marked X and Y on the locus where an angle of 45° is made between the negative
real axisand aline drawn from X or Y to the origin. At X, the loop gain can be calculated using
(9.105)

(9.114)

|pil - |p2l
O =
Is — pal - |s — pa2l

(9.115)

If p1 isadominant pole, we can assume that |p1| < |p2| and o; = p2/2. For poles at 45°,
Is — p1l = |s — po| =~ v/2| p2|/2. Thus (9.115) becomes

1 2
pe 1 (val2)
[pal - |p2l 2

_Lipal
2| pal

Thisgives

(9.116)
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for the value of Ty required to produce poles at X and Y in Fig. 9.40. The effect of narrow-
banding the amplifier is now apparent. As | p1| is made smaller, it requires a larger value of
Tp to move the poles out to 45°. From (9.116), the dominant-pole magnitude | p1| required to
ensure adequate performance with agiven Tg and | p2| can be calculated.

9.5.4 Root Locus for Feedback-Zero Compensation

The techniques of compensation described earlier in this chapter involved modification of the
basic amplifier only. Thisisthe universal method used with op amps that must be compensated
for use with awide variety of feedback networks chosen by the user. However, this method is
quite wasteful of bandwidth, as was apparent in the calculations.

In this section, adifferent method of compensation will be described that involves modifi-
cation of thefeedback path and is generally limited to fixed-gain amplifiers. This method finds
application in the compensation of wideband feedback amplifierswhere bandwidth is of prime
importance. An example is the shunt-series feedback amplifier of Fig. 8.31, which is known
asacurrent feedback pair. The method is generally useful in amplifiers of thistype, where the
feedback is over two stages, and in circuits such as the series-series triple of Fig. 8.18a.

A shunt-seriesfeedback amplifier including afeedback capacitor Cr isshowninFig. 9.41.
Thebasic amplifier including feedback loading for thiscircuitisshownin Fig. 9.42. Capacitors
Cr at input and output have only aminor effect on the circuit transfer function. The feedback
circuit for this caseis shown in Fig. 9.43 and feedback function f is given by

i RE 1+ RpCps

=1 == 9.11
i2 RF+RE1+ RgRF Crs ( 7
Rg + Rp
Feedback function f thus contains a zero with a magnitude
1
= 9.118
Wz RrCr ( )
and a pole with a magnitude
R R 1

wy = “EXRE (9.119)

Rg  RrCr

Quantity (Rg + Rr)/RE is approximately the low-frequency gain of the overall circuit with
feedback applied, and, since it is usualy true that (Rg + Rr)/Rg > 1, the pole magnitude

2
z
Q R f

Re
— AN\I —_

||
[}
Cr

Figure 9.41 Shunt-series feedback amplifier including afeedback capacitor Cr.
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L RZT =C I +

Figure 9.42 Basic amplifier including feedback loading for the circuit of Fig. 9.41.

Ce
|l
iy I
MWy
Re :
Re 2 Figure 9.43 Circuit for the calculation of
J feedback function f for the amplifier

given by (9.119) isusually much larger than the zero magnitude. Thiswill be assumed and the
effects of the pole will be neglected, but if (Rg + Rr)/Rg becomes comparable to unity, the
pole will be important and must be included.

The basic amplifier of Fig. 9.42 has two significant poles contributed by Q1 and Q5.
Although higher magnitude poles exist, these do not have a dominant influence and will be
neglected. The effects of this assumption will be investigated later. The loop gain of the cir-
cuit of Fig. 9.41 thus contains two forward-path poles and a feedback zero, giving rise to the
root locus of Fig. 9.44. For purposes of illustration, the two poles are assumed to be p1 =
—10 x 10 rad/sand p» = —20 x 10° rad/sand the zero isz = —50 x 10° rad/s. For conve-
niencein the calculations, the numbers will be normalized to 10° rad/s.

Assume now that the loop gain of the circuit of Fig. 9.41 can be varied without changing
the parameters of the basic amplifier of Fig. 9.42. Then aroot locus can be plotted as the loop
gain changes, and using rules 1 and 2 indicates that the root locus exists on the axis between
p1 and po, and to the left of z. The root locus must thus break away from the axis between p1
and p» at o1 as shown, and return again at o2. One branch then extends to the right along the
axis to end at the zero while the other branch heads toward infinity on the left. Using rule 6
gives

1 1 1

= 9.120
O'1+10+O'1+20 o1+ 50 ( )

Solution of (9.120) for o1 gives

o1 = —84.6 or —154
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jo
A

splane x 10° rad/sec

Figure 9.44 Root locus for the circuit of Fig. 9.41 assuming the basic amplifier contributes two poles
to T'(s) and the feedback circuit contributes one zero.

Obviously o1 = —15.4andtheother valueisoy = —84.6. Notethat these pointsare equidistant
from the zero, and, in fact, it can be shown that in this example the portion of the locus that is
off the real axisis acircle centered on the zero. An aspect of the root-locus diagrams that is
auseful aid in sketching the loci is apparent from Fig. 9.39 and Fig. 9.44. The locus tends to
bend toward zeros asif attracted and tends to bend away from poles as if repelled.

The effectiveness of the feedback zero in compensating the amplifier is apparent from
Fig. 9.44. If we assume that the amplifier has poles p1 and p, and there is no feedback zero,
then when feedback is applied the amplifier poles will split out and move paralel to the jw
axis. For practical values of loop gain Tp, thiswould result in “high Q" poles near the jw axis,
which would give rise to an excessively peaked response. In practice, oscillation can occur
because higher magnitude poles do exist and these would tend to give alocus of the kind of
Fig. 9.39, where the remote poles cause the locus to bend and enter the right half-plane. (Note
that thisbehavior is consistent with the alternative approach of considering adiminished phase
margin to be causing apeaked response and eventual instability.) Theinclusion of the feedback
zero, however, bends the locus away from the jw axis and allows the designer to position the
polesin any desired region.

An important point that should be stressed is that the root locus of Fig. 9.44 gives the
poles of the feedback amplifier. The zero in that figure is a zero of loop gain 7T'(s) and thus
must be included in the root locus. However, the zero is contributed by the feedback network
and is not azero of the overall feedback amplifier. As pointed out in Section 9.5.2, the zeros of
the overall feedback amplifier are the zeros of basic amplifier a(s) and the poles of feedback
network f(s). Thusthe transfer function of the overall feedback amplifier in this case has two
poles and no zeros, as shown in Fig. 9.45, and the poles are assumed placed at 45° to the axis
by appropriate choice of z. Since the feedback zero affects the root locus but does not appear
as a zero of the overall amplifier, it has been called a phantom zero.

Ontheother hand, if the zero zwere contributed by the basic amplifier, the situation would
be different. For the same zero, the root locus would be identical but the transfer function of
the overall feedback amplifier would then include the zero as shown in Fig. 9.46. This zero
would then have asignificant effect on the amplifier characteristics. Thispoint is made simply
toillustrate the difference between forward path and feedback-path zeros. Thereisno practical
way to introduce a useful forward-path zero in this situation.

Before leaving this subject, we mention the effect of higher magnitude poles on the root
locus of Fig. 9.44, and thisisillustrated in Fig. 9.47. A remote pole p3 will cause the locusto
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Figure 9.47 Root locus of the circuit of Fig. 9.41 when an additional pole of the basic amplifier is
included. (Not to scale.)

deviatefromtheoriginal asshown and produce poleswithalarger imaginary part than expected.
Thethird pole, whichisonthereal axis, may a so besignificant inthefinal amplifier. Acceptable
performance can usually be obtained by modifying the value of z from that calculated above.

Finally, the results derived in this chapter explain the function of capacitors Cp and Cr in
the circuit of the MC 1553 series-seriestriple of Fig. 8.21a, which was described in Chapter 8.
Capacitor Cp causes pole splitting to occur in stage Q» and produces a dominant polein the
basic amplifier, which aids in the compensation. However, as described above, a large value
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of Cp will cause significant loss of bandwidth in the amplifier, and so a feedback zero is
introduced via Cr, which further aids in the compensation by moving the root locus away
from the jw axis. The final design is a combination of two methods of compensation in an
attempt to find an optimum solution.

9.6 Slew Rate?

The previous sections of this chapter have been concerned with the small-signal behavior of
feedback amplifiersat high frequencies. However, the behavior of feedback circuitswith large
input signals (either step inputs or sinusoidal signals) is also of interest, and the effect of fre-
guency compensation on the large-signal, high-frequency performance of feedback amplifiers
is now considered.

9.6.1 Origin of Slew-Rate Limitations

A common test of the high-frequency, large-signal performance of an amplifier is to apply a
step input voltage as shown in Fig. 9.48. Thisfigure shows an op amp in aunity-gain feedback
configuration and will be used for purposes of illustration in this development. Assuming the
op amp is powered from a single supply between 3V and ground, the input here is chosen to
step from 0.5V to 2.5V so that the circuit operates linearly well before and well after the step.
Suppose initially that the circuit has a single-pole transfer function given by

V, A
Vi(S) =7 g (9.121)
where
1
T = ol (9.122)

and f, isthe —3-dB frequency. Since the circuit is connected as a voltage follower, the low-
frequency gain A will be close to unity. If we assume that thisis so, the response of the circuit
to thisstep input [V;(s) = 2/s] isgiven by

1 2
Vo(s) = - 9.123
(s) 1+4+s7s ( )
using (9.121). Equation 9.123 can be factored to the form
2 2
Vols) ==~ — — (9.124)
N
s+ —
T
From (9.124)
V,(t) = 2(1 — e7"/7) (9.125)
Vi
- + +25V

+ Vo
Vi _ +05V
- 1 — . Figure 9.48 (a) Circtit

- - and (b) input for testing
(@ (b) slew-rate performance.
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Figure 9.49 Response of the circuit of
t (us) Fig. 9.48 when a2-V stepinput is
! applied. (a) Response predicted by
(9.125) for the NE5234 op amp.
(b) (b) Simulated response for the NE5234.
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The predicted response from (9.125) is shown in Fig. 9.49a using data for the NE5234 op amp
with f, >~ 2.7 MHz. This shows an exponential rise of V, () by 2 V and the output reaches
90 percent of itsfina valuein about 0.14 ps.

A typical output for the NE5234 op amp in such atest is shown in Fig. 9.49b and exhibits
a completely different response. The output voltage is a slow ramp of aimost constant slope
and takes about 2.6 psto reach 90 percent of itsfinal value. Obviously the small-signal linear
analysisisinadequate for predicting the circuit behavior under these conditions. The response
shown in Fig. 9.49b istypical of op-amp performance with alarge input step voltage applied.
The rate of change of output voltage dV, /dt in the region of constant slopeis called the slew
rate and is usually specified in V/ps.

The reason for the discrepancy between predicted and observed behavior noted above
can be appreciated by examining the circuit of Fig. 9.48a and considering the responses in
Fig. 9.49. At = 0, the input voltage steps up by +2 V, but the output voltage cannot respond
instantaneously and is initially unchanged. Thus the op-amp differential input is V;; = 2V,
which drivestheinput stage completely out of itslinear range of operation. This can be seen by
considering atwo-stage op amp; simplified schematicsfor abipolar and CMOS op amp for use
inthisanalysisare shownin Fig. 9.50 a and b. The Miller compensation capacitor C connects
around the high-gain second stage and causes this stage to act as an integrator. The current
from theinput stage, which chargesthe compensation capacitor, is /.. Thelarge-signal transfer
characteristic from the op-amp differential input voltage V;, to I, isthat of adifferential pair,
which is shown in Fig. 9.50c. From Fig. 9.50c, the maximum current available to charge C
is 21y, which is the tail current in the input stage. For a bipolar differentia pair, |I,| ~ 2I1
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Figure 9.50 Simplified
schematics of atwo-stage

(a) bipolar and (b) MOS op amp
for slew rate calculations and

(c) approximate large signal
transfer characteristic for the
input stagesin (a) and (b). For
the bipolar differential pair,

V. ~ 3Vy. For the MOS
differential pair,V,, ~ v/2|Vyul.
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if |Vig| > 3Vr. For aMOS differential pair, |I| =~ 211 if |Viq] > V2|Vl (See Chapter 3.)
Thus, when V;; = 2V as described above, the input stage limitsand 7, ~ 211 (assuming that
V2| V1| < 2V for theMOScircuit). Thecircuit thus operates nonlinearly, and linear analysis
failsto predict the behavior. If the input stage did act linearly, the input voltage change of 2V
would produce avery large current I, to charge the compensation capacitor. The fact that this
current islimited to the fairly small value of 27, isthereason for the slew rate being much less
than alinear analysis would predict.

Consider alarge input voltage applied to the circuits of Fig. 9.50 so that I, = 2/1. Then
the second stage acts as an integrator with an input current 2/, and the output voltage V,, can

be written as
1
V, = C / 211dt (9.126)
and thus
dav, 211
= — 9.12
dt C ( 7

Equation 9.127 predicts a constant rate of change of V,, during the slewing period, whichisin
agreement with the experimental observation.

The above calculation of slew rate was performed on the circuits of Fig. 9.50, which have
no overall feedback. Sincetheinput stage producesaconstant output current that isindependent
of itsinput during the slewing period, the presence of afeedback connection to the input does
not affect the circuit operation during thistime. Thus, the slew rate of the amplifier isthe same
whether feedback is applied or not.

TheNE5234 op amp does not quitefit themodel shown in Fig. 9.50a because the output of
itsfirst stageisdifferential. Figure 9.51 showsamodel that assumesthe op-amp common-mode
input voltageislow enough that 01, Q2, and Qs-Q7 in Fig. 6.36 are off. In practice, the input
step in Fig. 9.48a changes the op-amp common-mode input voltage. Although this change
affectsthe biasing of the input stage in the NE5234, it haslittle effect on the currentsthat limit
the slew rate because the total current that biases the two differential pairs Q1-Q4inFig. 6.36

Vee
6 HA 6 UA 6 UA Cpy=
+ M " 5.5 pF
Il
Vig 10| 2
-~ M + Vo
Qs Qs
oo 'cgl 'cml
5221 O Qg Q1o
<P e \| \| Biascy
. T A A
_— M M
M
| ; Vbiascm
3
= Ry = Ry
22 kQ 22 kQ

—Vee =0

Figure 9.51 Simplified schematic of the NE5234 op amp.
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is constant. Therefore, the change in the op-amp common-mode input voltage isignored here.
The three current sources at the top of Fig. 9.51 model the dc currents set by transistors Q11,
013, and Q14 inFig. 6.36 and are assumed constant here. When V;; = 0, I3 = Icqa = —3 pA,
ignoring base currents (as is done throughout this analysis for simplicity). The negative signs
here stem from the convention that definestransistor collector current as positivewhen it flows
into the collector. To simplify the following description, let I3 = —Ic3 and Iy = —I¢c4. Then
with Vg =0, I3 = 14 = 3 pA, Icg = Ic10 = 6 pA, and capacitor currents Io1 = I = 0, as
showninFig. 9.51 and calculated in Chapter 6. Immediately after thestepinputinFig. 9.48, Q4
turnsoff, I3 = 6 pA and 74 = 0. Note that the changesin I3 and I, are differential in the sense
that one increases and the other decreases while their average value is constant. So we will
ignore the common-mode feedback circuit that controls the average voltage to ground at the
first-stage outputs and assume the voltage from node Biascy to ground (Vp;asem) 1S constant.

First, we calculate Icg immediately after the input step using the assumption that Vy;qsem
is constant by setting Vzg + V.9 before and after the step equal to each other.

(3 pA + 6 pA)22kQ + Vrin (GI'L“A> — (6 pA + 1cg)22KS2 + VrIn (jcg) (9.1283)
59 S9

Simplifying this equation gives

0 = (Icg — 3 pA)22 kR + Vrin (’“’) (9.128b)
6 pA
Solving this equation by trial and error gives Icg = 3.6 pA. Then from KCL at node 9,
I =6 pA — Icg = 2.4 pA. Asaresult, dVg/dt = 2.4 nA /5.2 pF = 0.46 V/us, where Vg is
the voltage from node 9 to ground.
Next, we calculate 1019 immediately after the input step in asimilar manner.

(3 A + 6 pA)22kQ + V7In (6““A) = (Ic10)22 kQ + VrIn <ICl°> (9.128¢)
Is10 Is10

Simplifying this equation gives

0= (I — 9 pA)22 KR + Vrin < fewo ) (9.128d)
6 pA

Solving this equation by trial and error gives Icg = 8.6 wA. Then from KCL at node 10,
I = Ic10 — 6 pA = 2.6 pA. Therefore, the voltage across Ca; increases at arate of d(V,, —
Vi0)/dt = 2.6 pA /5.5 pF = 0.47 V/us, where Vyg is the voltage from node 10 to ground. In
Fig. 9.51, the amplifier that represents the second and third stagesin the NE5234 has negative
feedback connected around it through capacitor C2,. Assuming that the gain of this amplifier
islarge and that it operates linearly, V,, isdriven so that Vg >~ Vg. Therefore, the slew rate of
the NES234 is

dV,/dt = dVo/dt + d(V, — Vi0)/dt = (0.46 + 0.47) Vius= 0.93V/ps  (9.128¢)

In contrast, the plot in Fig. 9.49b shows that the simulated slew rate is about 0.68 V/us, and
the difference stems partly from ignoring base currents in the calculations above.

9.6.2 Methods of Improving Slew-Rate in Two-Stage Op Amps

In order to examine methods of slew-rate improvement, a more general analysis is required.
This can be performed using the circuit of Fig. 9.52, which isageneral representation of an op
amp circuit. The input stage has a small-signal transconductance g,,; and, with alarge input
voltage, can deliver a maximum current 7,,, to the next stage. The compensation is shown
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Figure 9.52 Generalized representation of an op amp for slew-rate calculations.

as the Miller effect using the capacitor C, since this representation describes most two-stage
integrated-circuit op amps.
FromFig. 9.52 and using (9.127), we can calculatethe slew ratefor alarge input voltage as

dv{) _ Ixm

= (9.129)
dt C
Consider now small-signal operation. For theinput stage, the small-signal transconductanceis
Al
=gm 9.130
N ( )
For the second stage (which acts as an integrator) the transfer function at high frequenciesis
AV, 1
= — (9.1314)
Al sC
and in the frequency domain
AV, 1
iw) = —— 9.131b
AL V) = 7oz (9.131b)
Combining (9.130) and (9.131b) gives
A Vo . 8ml
= 9.131
AV, U9 = o (9.131¢)

In our previous consideration of compensation, it was shown that the small-signal, open-loop
voltagegain (AV,/AV;)(jw) must fall to unity at or before afrequency equal to the magnitude
of the second most dominant pole (w>). If we assume, for ease of calculation, that the circuit
is compensated for unity-gain operation with 45° phase margin as shown in Fig. 9.15, the
gain (AV,/AV;)(jw) asgiven by (9.131c) must fall to unity at frequency w,. (Compensation
capacitor C must be chosen to ensure that this occurs.) Thus from (9.131c)

1= 8ml
w2C
and thus
1
- (9.132)
C 8ml

Note that (9.132) was derived on the basis of a small-signal argument. This result can now be
substituted in the large-signal equation (9.129) to give
dV() Ixm

Slew rate = = 2 (9.133)
dt EmlI
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Equation 9.133 allows consideration of the effect of circuit parameters on slew rate, and it
isapparent that, for agivenwo, theratio I, / g,»; must beincreased if slew rateisto beincreased.

9.6.3 Improving Slew-Rate in Bipolar Op Amps

The analysis of the previous section can be applied to a bipolar op amp that uses Miller
compensation. In the case of the op amp in Fig. 9.50a, we have I, = 211, gm; = ql1/ kT,
and substitution in (9.133) gives

Slew rate = 2qua)2 (9.139)
Since both I, and g,,,; are proportional to bias current 71, the influence of 71 cancelsin the
equation and slew rateisindependent of 7, for agiven w,. However, increasing w, will increase
the slew rate, and this course is followed in most high-slew-rate circuits. The limit hereis set
by the frequency characteristics of the transistorsin the IC process, and further improvements
depend on circuit modifications as described bel ow.

The above calculation has shown that varying the input-stage bias current of atwo-stage
bipolar op amp does not change the circuit slew rate. However, (9.133) indicates that for a
given I,,,, slew rate can be increased by reducing the input-stage transconductance. One way
this can be achieved is by including emitter-degeneration resistors to reduce g,,; as shownin
Fig. 9.53. The small-signal transconductance of this input stage can be shown to be

Al 1

ml = =g, 9.135
B AV~ B guiRe (9.139)
where
ql
ml = — 9.136
gm1 = o ( )
Thevalue of I, isstill 21;1. Substituting (9.135) in (9.133) gives
2kT
Slew rate = —w2 (1 + g1 RE) (9.137)
q
+Vee
; 21y
+ o M
Vig Re Re

Figure 9.53 Inclusion of emitter resistorsin the
~Vee input stage in Fig. 9.50a to improve slew rate.
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Thus the slew rate is increased by the factor [1 + (g,,1RE)] over the value given by (9.134).
The fundamental reason for thisis that, for a given bias current /1, reducing g,,; reduces the
compensation capacitor C required, as shown by (9.132).

The practical limit to thistechnique is due to the fact that the emitter resistors of Fig. 9.53
have a dc voltage across them, and mismatches in the resistor values give rise to an input dc
offset voltage. The use of large-area resistors can give resistors whose values match to within
0.2 percent (1 part in 500). If the maximum contribution to input offset voltage allowed from
theresistorsis| mV, then these numbers indicate that the maximum voltage drop alowed is

I RE|max = 500 mV (9.138)
Thus
q 500
gmiRE|max = k—TllREImax =26 = 20 (9.139)

Using (9.139) in (9.137) shows that given these data, the maximum possible improvement in
slew rate by use of emitter resistorsis afactor of 21 times.

Finally, inthisdescription of methods of slew-rateimprovement, we mentionthe ClassAB
input stage described by Hearn.?! In this technique, the small-signal transconductance of the
input stageisleft essentially unchanged, but thelimit 7,,,, on the maximum current availablefor
charging the compensation capacitor isgreatly increased. Thisisdone by providing alternative
pathsintheinput stagethat becomeoperativefor largeinputsand deliver largecharging currents
to the compensation point. This hasresulted in slew rates of the order of 30 V/usin bipolar op
amps, and, asin the previous cases, the limitation is an increase in input offset voltage.

9.6.4 Improving Slew-Rate in MOS Op Amps

A two-stage Miller-compensated MOS op amp is shown in Fig. 9.50b, and its slew rate is
given by (9.127). From the analysis in Section 9.6.2, (9.133) shows that the slew rate can be
increased by increasing wy. On the other hand, if ws is fixed, increasing the ratio I,,,/gm1
improves the slew rate. Using (1.180), (9.133) can be rewritten as

I 21 21
Sewrate= Ty = ———t = [y (9.140)
gmi V2R (W/L)1 I k' (W/L)1

This equation shows that the slew rate increases if (W/ L)1 decreases with I constant. In this
case, gm1 = gm1 decreases. From (9.132), asmaller compensation capacitor can then be used;
therefore, the dew rate in (9.127) increases because 1 is unchanged. Equation 9.140 also
showsthat the slew rate can beincreased by increasing /3. Assumethat 71 increases by afactor
xwhere x > 1. Thentheratio I,,, /g increases by the factor ./x because g,,1 is proportional
to 4/I1. From (9.132), the compensation capacitor must be increased by the factor /x if wy is
fixed. With these changes, the slew rate in (9.127) becomes

dav, _ 2xI1 _ leﬁ
d  CJx  C
Sincex > 1, the dlew rate isincreased.

Alternatively, theratio I,,, /g, of theinput stage can beincreased by adding degeneration
resistors Rg in series with the sources of M1 and M> to give

(9.141)

_ 8m1l
1+ (gm1 + gmp1)Rs

8mlI (9.142)



9.6 Slew Rate  ©6aY

For fixed I1, increasing Ry decreases g,,; and increases I,,,/gn;, Which increases the
dew rate.

These approaches increase the slew rate but have some drawbacks. First, decreasing g,/
of the input stage while keeping its bias current constant will usually lower the dc gain of the
first stage and hence reduce the dc gain of the entire op amp. Also, increasing /1 or reducing
(W/ L)1 tends to increase the input-offset voltage of the op amp, as can be seen from (3.248).
Finally, if source-degeneration resistors are added, mismatch between these resistors degrades
the input-offset voltage.

For single-stage MOS op amps, such as the telescopic-cascode and folded-cascode op
amps, the slew rateis set by the maximum output current divided by the capacitance that loads
the output. The maximum output current is equal to the tail current in these op amps.

EXAMPLE

Find the output slew rate for the cascode op amp shown in Fig. 9.54.

Assuming the op amp has a large positive differential input voltage applied, M is cutoff
and Ita)L flowsthrough M. Therefore the drain current in M>4 is zero, and the drain current
in Mz is I;3 = —ItaiL. The current mirror M3-My forces I3 = 144. 1t follows that Iya4 =
134 = —ItaL- The current flowing into the load capacitor C; is

Iy = —Ig2a — laaa = —0— (=ItaiL) = Irai
Therefore the positive output slew rateis
dvo 1, I

dt _FL_ Cr

(9.143)

Application of alarge negativeinput forces M1 into cutoff so Ita;. must flow through Ma.
Therefore, Iyga = Iya = 143 =0 and 124 = 12 = ItaL- The current 1, flowing through
CL is

Iy = —lg2a — laaa = —IaiL — 0= —ItalL
Hence, the negative slew rate is the opposite of the valuein (9.143), —ItaL/CyL.

Voo

M3j|__|I: |V|4

—L_|E M3A E M4A

T|d4A Io
—_—

| T
Vo l la2a c. v,

Mia l: Maa I _
int ——[ M, le_:ll— in—

ITAIL

Figure 9.54 A CMOS
~Vss telescopic-cascode op amp.
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Cp * Figure 9.55 An op amp with capacitive
+ —c v, loadand feedback. Thisis the switched-
I capacitor integrator of Fig. 6.10a during ¢-,

—  assuming ideal MOS switches.

CMOS op amps are often used without an output stage when the output loading is purely
capacitive, asisthe case in switched-capacitor circuits. Avoiding an output stage saves power
and is possible because low-output resistance is not needed to drive a capacitive load. An
example of such acircuit isthe switched-capacitor integrator shown in Fig. 6.10a. Thiscircuit
is redrawn in Fig. 9.55 when clock phase ¢ is high and ¢1 is low, assuming that MOS
transistors M1-M4 behave like ideal switches. The additional capacitor C;, here models the
total parasitic capacitance at the op-amp input and includes the input capacitance of the op
amp. A question that arisesis: “ For the feedback circuit in Fig. 9.55, what value of output load
capacitance should be used to compute the slew rate for a single-stage op amp?’ When the
op amp is slewing, its behavior is nonlinear. Therefore the feedback is not effective and the
virtual ground at the negative op-amp input is lost. With the feedback |oop broken, the total
capacitance seen from the output to ground is

CrL+ CilI(Cs + Cip) (9.144)

This is the capacitance seen looking from the op-amp output node to ground, with the con-
nection to the op-amp inverting input replaced with an open circuit. The effective output |oad
capacitance in (9.144) is the same as the output load found when the feedback 1oop is broken
to find the return ratio.

For the CMOS op amps considered so far in this section, the slew rateis proportional to a
biascurrentintheop amp. A CMOSop amp withaClassAB input stage can giveaslew ratethat
isnot limited by adc biascurrent intheop amp. An example?®22 isshownin Fig. 9.56. Theinput
voltageisapplied between the gatesof M1, Mo and M3, M4. Transistors M1 and My act simply
as unity-gain source followers to transfer the input voltage to the gates of Mg and M7. Diode-
connected transistors Ms and Mg act aslevel shifts, which, together with biascurrent sources I,
set thequiescent ClassAB currentin Mo, M3, Mg, and M7. Thecurrentsin M3 and M7 aredeliv-
ered to the output via cascode current mirrors Mg, M19, M13, M14 and M1, M12, M1s5, M16.
Bias currents can be determined by assuming that the input voltage V; = 0, giving

Vis1+ |Vassl = [Vesel + Vasa (9.145)
Assuming that (1.157) isvalid we have

(.11 (L .11 (L |1 (L
th + ZE (W)l + |th| + 2@ (W>5 - |th| + ZE <>6 + Vm
(9.146)

where Ig = |Ipg| = Ip3 = Ip2 = |Ip7| is the bias current and subscripts n and p indicate
NMOS and PMOS, respectively. The two sides of the input stage are assumed symmetrical.
From (9.146) we have

w28 )l )] o

Equation 9.147 is the design equation for the input-stage bias current /.
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Figure 9.56 CMOS amplifier with a Class AB input stage.

Assuming that the cascode current mirrorsin Fig. 9.56 have unity current gain, the bias
currentsin Mg-Mi6 @l equal Ip. To analyze this circuit, we will connect a voltage V; to the
noninverting op-amp input and ground the inverting op-amp input. If apositive V; is applied,
the magnitude of the currentsin M3 and Mg increase, while the magnitude of the currentsin
M> and M7 decrease. When mirrored to the output, these changes drive 1, and V,, positive. To
calculate the small-signal gain, we neglect body effect. We can consider Mg to act as source
degeneration for M3. The resistance looking into the source of Mg is1/g.e, thus

. 8m3
iga= ——5—=V; (9.148)
14 8m3
8m6

Similarly, M> acts as source degeneration for M7, so

. 8m7 8m2
g7 = V; = V; (9.149)
14 8m7 14 8&m?2
8m?2 8m7

where the right-most expression is found by rearranging. Thus, the transconductance of the
amplifier is

. L )
=2 Tl s (9.150)
Vilv,=0 Vi 14 2m2
8m6

USing 8m2 = 8m3 and 8m6 = 8m7- If 8m3 = &mb6: thenG,, = 8m3-
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The output resistance of thisop amp isjust the output resistance of the cascodesin parallel
andis

R, ~ (rol4gml4r013)||("015gm15”016) (9.151)
Finaly, the small-signal voltage gain is
Ay =GpR, (9152)

The small-signal analysis above showed that a small positive V; causes a positive I,. If
V; continues to increase beyond the small-signal linear range of the input stage, M» and M7
will be cut off, while M3 and Mg will be driven to larger values of |V,|. The currentsin M3
and Mg can increase to quite large values, which gives a correspondingly large positive 1,,. For
large negative values of V;, M3 and Mg turn off, M, and M7 conduct large currents, and 1,
becomes large negative. Thus this circuit is capable of supplying large positive and negative
currentsto aload capacitance, and the magnitude of these output currents can be much larger
than the bias current I in the input stage. Therefore, this op amp does not display slew-rate
limiting in the usual sense.

One disadvantage of this structure is that about half the transistors turn completely off
during slewing. As a result, the time required to turn these transistors back on can be an
important limitation to the high-frequency performance. To overcome this problem, the op
amp can be designed so that the minimum drain currents are set to a nonzero value.?

9.6.5 Effect of Slew-Rate Limitations on Large-Signal Sinusoidal Performance

The slew-rate limitations described above can also affect the performance of the circuit when
handling large sinusoidal signals at higher frequencies. Consider the circuit of Fig. 9.48 with
alarge sinusoidal signal applied as shown in Fig. 9.57a. Since the circuit is connected as a
voltagefollower, theoutput voltage V,, will beforced tofollow the V; waveform. The maximum
value of dV;/dt occurs as the waveform crosses the axis, and if V; is given by

Vi = V;sinot (9.153)
then
dVi ‘7 COSwt
— =WV .
dt !
and
dv; ~
— =oV; (9.154)
dt | imax

Aslong asthe value of dV;/dt|max given by (9.154) is less than the slew-rate limit, the output
voltage will closely follow theinput. However, if the product wViis greater than the slew-rate
limit, the output voltage will be unableto follow theinput, and waveform distortion of thekind
shownin Fig. 9.57b will result. If asinewave with V; equal to the supply voltageis applied to
the amplifier, slew limiting will eventually occur asthe sine-wave frequency isincreased. The
frequency at which this occursis called the full-power bandwidth of the circuit. (In practice,
avalue of V; dlightly less than the supply voltage is used to avoid clipping distortion of the
type described in Chapter 5.)
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Actual waveform

Figure 9.57 (a) Large sinusoidal input voltage

applied to the circuit of Fig. 9.48. (b) Output

voltage resulting from input (a) showing slew
(b) limiting.

EXAMPLE
Calculate the full-power bandwidth of the NE5234. Use V; = 1 V. From (9.154) put
wV; = dew rate

Using the slew rate of 0.68 V/usfound in simulation gives

0.68 V/us .
= T = 680 x 10° rad/s
Thus
f = 110kHz

This means that a NE5234 op amp with a sinusoidal output of 1V amplitude will begin to
show slew-limiting distortion if the frequency exceeds 110 kHz.

APPENDIX

A.9.1 ANALYSIS IN TERMS OF RETURN-RATIO PARAMETERS

Much of the analysisin this chapter isbased on theideal block diagram in Fig. 9.1. This block
diagram includesthe forward gain a and feedback f, which are the parameters used in two-port
analysis of feedback circuits in Chapter 8. The resulting closed-loop gain expression is

a a
= 9.155
1+7 1+af ( )

A=
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The block diagram from return-ratio analysis in Fig. 8.42 is the same as Fig. 9.1 if a
is replaced by b, f is replaced by 1/A,, and the direct feedforward d is negligible. (The
contribution of feedforward through the feedback network to aisalso neglected inthe analysis
in Sections 9.2-9.5, since feedforward introduces one or more zeros into a(s), but only one-
and two-polea(s) are considered in these sections. Neglecting the feedforward in a or thedirect
feedthrough d is reasonable if its effect is negligible at and below the frequency where the
magnitude of the loop transmission fallsto 1.) The corresponding equations from return-ratio
analysisare

b d b b

“1vaT1va " 1xa . b
1+
Axo

A

(9.156)

For the circuit in Fig. 8.24,0 < 1/A. < 1, and b is positive at low frequencies. Therefore,
the equations, graphs, and relationships in Sections 9.2-9.5 can be expressed in terms of the
return-ratio variables by making the following substitutions:

a —b (9.1579)
f—1/Ax (9.157b)
T —> R (9.157¢)
af— b/Ax (9.157d)

Thereturn ratio can be used to check stability of an amplifier with a single feedback loop
because A, and d are stable transfer functions associated with passive networks, and %(s) is
stable becauseit isthe signal transfer around aloop that consists of one gain stage or a cascade
of stable gain stages. Therefore the zeros of 1 + %(s), which are poles of the closed-loop gain
A, determine the stability of the feedback circuit.2> From the Nyquist stability criterion, these
zeros are in the left half-plane if a polar plot of %(jw) does not encircle the point (—1,0). In
most cases, this stability condition is equivalent to having a positive phase margin. The phase
margin is measured at the frequency where |2 (jw)| = 1.

Since the equations for two-port and return-ratio analyses are not identical, 7'(s) and R(s)
may be different for agiven circuit.2 In general, the phase margins using T and % may differ,
but both will have the same sign and thereforewill agree on the stability of thefeedback circuit.

A.9.2ROO0TS OF A QUADRATIC EQUATION

A second-order polynomial often appears in the denominator or numerator of atransfer func-
tion, and the zeros of this polynomial are the poles or zeros of the transfer function. In this
appendix, the relationships between the zeros of a quadratic and its coefficients are explored
for afew specific cases of interest. Also, the conditions under which adominant root exists are
derived.

Consider the roots of the quadratic equation

as’ +bs+c=0 (9.158)

The two roots of this equation, r1 and r», are given by the quadratic formula:

(9.159)
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whereit isunderstood that the square root of a positive quantity is positive. Factoring b out of
the square root and rearranging gives

b dac
b
= — (1 + JB) (9.160b)
The quantity under the square root in (9.160a) has been replaced by D in (9.160b), where
4dac
D=1-— W7 (9.161)

Now, consider the locations of the rootsif coefficientsa, b, and ¢ al have the same sign.
In this case, both roots are in the left half-plane (LHP), aswill be shown next. First, note that
if all the coefficients have the same sign, then

b

— >0 (9.162)

2a
and

4(1 N

7; ~ 0. (9.163)
Let usdivide (9.163) into two different regions. First, if

dac

then D will be positive and less than one. Therefore, /D < 1,50 1+ /D and 1 — /D are
both positive. As aresult, the roots are both negative and real, because —b/2a < 0.
Now, consider the other region for (9.163), which is

| (9.165)

In this case, D < 0; therefore /D is imaginary. The roots are complex conjugates with a
real part of —b/2a, which is negative. So the roots are again in the LHP. Therefore, when
coefficients a, b, and c all have the same sign, both roots are in the LHP.

Next, consider the locations of the roots if coefficients a and b have the same sign and ¢
hasadifferent sign. Inthiscase, onereal root isin theright half-plane (RHP) and the other isin
the LHP. To provethis, first note from (9.161) that D > 1 here because 4ac/b? < 0. Therefore
both roots are real and v/D > 1, so

1++v/D>0 (9.166a)
and

1-v/D<0 (9.166h)
Substituting into (9.160), one root will be positive and the other negative (the sign of —b/2a
is negative here).

Finally, let us consider the conditions under which LHP roots are real and widely spaced.
From (9.160), real LHProots are widely spaced if

b b
—Z(1+«/B) < —2(1—@) (9.167)

or
1+vD>»1-+D (9.168)
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Substituting the expression for D in (9.161) into (9.168) and simplifying leads to an equivalent
condition for widely spaced roots, whichis

dac
W <1 (9.169)
Under this condition, oneroot is
b b
rg:—z(l—i-«/ﬁ)% —o A+ =~ (9.170a)
The other root is
b
b 4a
S <1 J1- C) (9.170b)
2
b dac
AN ——|(1-(1-
2 (1= (1-3%))
- b
where the approximation
VI—x~1- % for |x| <« 1 (9.171)

has been used. Here, |r1| < |r2| because |r1| = ¢/b < b/a =~ |rz| (which follows from
4ac/b? < 1). If these roots are poles, r1 corresponds to the dominant pole, and r» gives the
nondominant pole. Equations 9.170aand 9.170b are in agreement with (9.30) through (9.33).

Table 9.1 summarizes the location of the roots of (9.158) for the cases considered in this
appendix. When both roots are in the LHP, the roots are both real if (9.164) is satisfied. These
roots are widely spaced if (9.169) is satisfied.

Table 9.1
Sign of Coefficient Valuesin (9.158)
a b c Roots
+ + + Bothin LHP
_ — — Bothin LHP
+ + — Onein LHP, onein RHP
_ — + Onein LHP, onein RHP
PROBLEMS

9.1 An amplifier has a low-frequency forward
gain of 200 and its transfer function has three neg-
ative real poles with magnitudes 1 MHz, 2 MHz,
and 4 MHz. Calculate and sketch the Nyquist dia-
gram for this amplifier if it is placed in a negative
feedback loop with f = 0.05. Isthe amplifier stable?
Explain.

9.2 For the amplifier in Problem 9.1, calculate
and sketch plots of gain (in decibels) and phase versus

frequency (log scale) with no feedback applied. Deter-
mine the value of f that just causes instability and the
value of f giving a60° phase margin.

9.3 If an amplifier has a phase margin of 30°, how
much does the closed-loop gain peak (above the low-
frequency value) at the frequency wheretheloop-gain
magnitudeis unity?

9.4 Anamplifier hasalow-frequency forward gain
of 40,000 and its transfer function has three negative



real poles with magnitudes 2 kHz, 200 kHz, and
4 MHz.

(a) If this amplifier is connected in a feedback
loop with f constant and with low-frequency gain
Ap = 400, estimate the phase margin.

(b) Repeat () if Agis200 and then 100.

9.5 Anamplifier hasalow-frequency forward gain
of 5000 and its transfer function has three negative
real poles with magnitudes 300 kHz, 2 MHz, and
25 MHz.

(a) Calculate the dominant-pole magnitude re-
quired to give unity-gain compensation of this ampli-
fier with a 45° phase margin if the original amplifier
polesremain fixed. What is the resulting bandwidth of
the circuit with the feedback applied?

(b) Repeat (a) for compensationin afeedback loop
withaclosed-loop gain of 20 dB and 45° phase margin.

9.6 Theamplifier of Problem 9.5 isto be compen-
sated by reducing the magnitude of the most dominant
pole.

(a) Calculate the dominant-pole magnitude re-
quired for unity-gain compensation with 45° phase
margin, and the corresponding bandwidth of thecircuit
with the feedback applied. Assume that the remaining
poles do not move.

(b) Repeat (a) for compensationin afeedback loop
withaclosed-loop gain of 40 dB and 45° phase margin.

9.7 Repeat Problem 9.6 for the amplifier of Prob-
lem9.4.

9.8 An op amp has a low-frequency open-loop
voltage gain of 100,000 and afrequency responsewith
asingle negative-real pole with magnitude 5 Hz. This
amplifier isto be connected in a series-shunt feedback
loop with f = 0.01 giving a low-frequency closed-
loop voltage gain Ag ~ 100. If the output impedance
without feedback is resistive with a value of 100 €2,
show that the output impedance of the feedback circuit
can berepresented asshownin Fig. 9.58, and calculate
the values of these elements. Sketch the magnitude of
the output impedance of the feedback circuit on log

scalesfrom 1 Hz to 100 kHz.
O
L
§ R, <o
Ry
O

Figure 9.58 Circuit representation of the output
impedance of a series-shunt feedback circuit.

Problems 09/

9.9 An op amp with low-frequency gain of 108
dB has three negative real poles with magnitudes
30 kHz, 500 kHz, and 10 MHz before compensation.
The circuit is compensated by placing a capaci-
tance across the second stage, causing the second
most dominant pole to become negligible because
of pole splitting. Assume the small-signal transcon-
ductance of the second stage is 6.39 mA/V and the
small-signal resistances to ground from the input
and output are 1.95 MQ and 86.3 k€2, respec-
tively. Calculate the value of capacitance required
to achieve a 60° phase margin in a unity-gain feed-
back connection and calculate the frequency where
the resulting open-loop gain is 0 dB. Assume that the
pole with magnitude 10 MHz is unaffected by the
compensation.

9.10 Repeat Problem 9.9 if the circuit is compen-
sated by using shunt capacitance to ground at theinput
of the second stage. Assume that this affects only the
most dominant pole.

9.11 Calculate and sketch the root locus for the
amplifier of Problem 9.4 asf varies from O to 1. Esti-
mate the value of f causing instability and check using
the Nyquist criterion.

9.12 An amplifier has gain ap, =200 and its
transfer function has three negative real poles with
magnitudes 1 MHz, 3 MHz, and 4 MHz. Calculate
and sketch the root locus when feedback is applied as
f varies from 0 to 1. Estimate the value of f causing
instability.

9.13 For thecircuit of Fig. 9.41, parameter values
are Ry =5kQ, R =50 @, and Cr = 1.5 pF. The
basic amplifier of the circuit is shown in Fig. 9.42
and has two negative real poles with magnitudes
3 MHz and 6 MHz. The low-frequency current gain
of the basic amplifier is 4000. Assuming that the loop
gain of the circuit of Fig. 9.41 can be varied without
changing the parameters of the basic amplifier, sketch
root loci for thiscircuit asf varies from 0 to 0.01 both
withand without C . Estimate the pole positionsof the
current-gain transfer function of the feedback ampli-
fier of Fig. 9.41 withthevauesof Ry and R specified
both with and without C . Sketch graphsin each case
of gain magnitude versusfreguency onlog scalesfrom
f =10kHzto f = 100 MHz.

9.14 An op amp has two negative rea open-loop
poles with magnitudes 100 Hz and 120 kHz and a
negative real zero with magnitude 100 kHz. The low-
frequency open-loop voltage gain of the op amp is
100 dB. If this amplifier is placed in a negative feed-
back loop, sketch theroot locusasf variesfrom0to 1.
Calculatethe polesand zeros of the feedback amplifier
for f=107%and f = 1.
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Figure 9.59 Input stages of an op amp.

9.15 Repeat Problem 9.14 if the circuit has nega-
tive real poles with magnitudes 100 Hz and 100 kHz
and a negative real zero with magnitude 120 kHz.

9.16 The input stages of an op amp are shown in
the schematic of Fig. 9.59.

(a) Assuming that the frequency responseis dom-
inated by a single pole, caculate the frequency
where the magnitude of the small-signal voltage gain
IV, (jw)/V:(jw)| is unity and aso the output Slew rate
of the amplifier.

(b) Sketch the response V,(r) from 0 to 20 s for
astep input at V; from —5V to +5 V. Assume that
the circuit is connected in a noninverting unity-gain
feedback loop.

(c) Compare your results with a SPICE simu-
lation using parameters g = 100, V, = 130 V, and
I = 10715 A for all devices.

9.17 Repeat Problem9.16if thecircuit of Fig. 9.59
is compensated by a capacitor of 0.05 wF connected
fromthebaseof Qs to ground. Assumethat thevoltage
gain from the base of Qs to V, is —500.

9.18 The dlew rate of the circuit of Fig. 9.59 is
to be increased by using 10 k<2 resistors in the emit-
ters 0, and Q5. If the same unity-gain frequency isto
be achieved, calculate the new value of compensation
capacitor required and the improvement in slew rate.
Check your result with SPICE simulations.

9.19 Repeat Problem 9.18 if PMOS transistors
replace Q; and Q, (with no degeneration resistors).
Assume that the PMOS transistors are biased to
300 pA each (Igr = 600 pA), at which bias value
the MOS transistors have g,, = 400 pA/V.

9.20(a) Calculatethefull-power bandwidth of the
circuit of Fig. 9.59.

(b) If this circuit is connected in a noninverting
unity-gain feedback loop, sketch the output waveform
V, if V; isasinusoid of 10 V amplitude and frequency
45 kHz.

9.21 FortheCMOSoperationa amplifier shownin
Fig. 9.60, calculate the open-loop voltage gain, unity-
gain bandwidth, and slew rate. Assumethe parameters
of Table 2.1 with X; = 1 um. Assume that the gate of
Mg is connected to the positive power supply and that
the W/L of My has been chosen to cancel the right
half-plane zero. Compare your results with a SPICE
simulation.

9.22 Repeat Problem 9.21 except use the aspect
ratios, supply voltages, and bias current given in
Fig. 6.58 instead of the values in Fig. 9.60. Also,
assume that X, = 0.1 wm for all transistors operat-
ing in the active region, and use Table 2.4 for other
parameters.

9.23 If the circuit of Fig. 9.61 is used to generate
thevoltageto be applied to the gate of My inFig. 9.60,
calculate the W/L of Mg required to move the right
half-plane zero to infinity. Use data from Table 2.1
with X, = 1 pm. Check your result with SPICE.

9.24 Repeat Problem 9.23, but skip the SPICE
simulation. Here, My will beusedintheopampinFig.
L =1 pm for al transistors, Wg = Wio = 150 pm,
and Wy = Wi, = 100 pm. Assumethat X; = 0.1 um
for all transistorsoperatingintheactiveregion, and use
Table 2.4 for other parameters.
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9.25 Assuming that the zero has been moved to
infinity, determine the maximum load capacitance that
can be attached directly to the output of the circuit of
Fig. 9.60 and still maintain a phase margin of 45°.
Neglect al higher order poles except any due to the
load capacitance. Use the value of W/L obtained in
Problem 9.23 for Mg with the biascircuit of Fig. 9.61.

9.26 Repeat Problem 9.25 except, for the op amp,
use the aspect ratios, supply voltages, and bias current
given in Fig. 6.58 instead of the valuesin Fig. 9.60.
Also, for the bias circuit, use the aspect ratios, sup-
ply voltages, and bias current given in Problem 9.24.
Ignore junction capacitance for all transistors. Also,

Figure 9.61 Circuit for Problem 9.23.

assume that X, = 0.1 um for all transistors operat-
ing in the active region, and use Table 2.4 for other
parameters.

9.27 For the CMOS op amp of Fig. 9.60, assume
that My and the compensation capacitor are removed
and the output is loaded with a1 M resistor. Using
the data of Table 2.1, use SPICE to determine the gain
and phase versus frequency of the small-signal circuit
voltage gain.

The amplifier is to be connected in a negative
feedback loop with the 1-M 2 resistor connected from
the output to the gate of My, and aresistor R, fromthe
M, gate to ground. An input voltage is applied from
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the gate of M, to ground. From your previous simu-
lated data, determine the forward voltage gain of the
feedback configuration and the corresponding values
of R, giving phase margins of 80°, 60°, 45°, and 20°.
For each case use SPI CE to plot out the corresponding
overall small-signal voltage gain versus frequency for
the feedback circuit and also the step response for an
output voltage step of 100 mV . Compare and comment
on the results obtained. Assume X, = 1 pm and that
the drain and source regions are 2 um wide.

9.28 Using the basic topology of Fig. 8.53, design
a CMOS feedback amplifier with R, = o0, R, <
30 @, Ay =V,/Vv; = 10, and small-signa bandwidth
f-3d8 > 2 MHz. No peaking is alowed in the gain-
versus-frequency response. Supply current must be
less than 2 mA from each of = 5V supplies. The
circuit operates with R; = 1 k2 to ground and must
be able to swing V, ==+ 1V before clipping occurs.
Use the process data of Table 2.1 with X, = 0.5 um
and y, = 0.5 VY2, Source and drain regions are
9 pm wide. Verify your hand cal culations with SPICE
simulations.

9.29 The CMOS circuit of Fig. 9.56 is to be used
as a high-slew-rate op amp. A load capacitance of
C; = 10 pF is connected from V,, to ground. Supply
voltagesare = 5V and I; = 20 pA. Devices M1—M,
have W = 20 pm and L = 1 pm and devices Ms—Msg
have W = 60 pm and L = 1 pm. All other NMOS
deviceshave W = 60 pmand L = 1 um, and all other
PMOS devices have W =300 pum and L =1 pm.
Device data are 1, C,, = 60 pA/NV?, V,, =07 V,
V,=-07V,y=0,and|r =0.05V~L

(a) Calculate the small-signal open-loop gain and
unity-gain bandwidth of the circuit. Derive an expres-
sion for the large-signal transfer function 1,/ V; when
al four devices M,, M3, Mg, and M7 are on, and also
for larger V; when two of them cut off. At what value
of V; does the transition occur?

(b) Connect the circuit in a unity-gain negative
feedback loop (V, to the gate of M;) and drive the
circuit with avoltage step from —1.5V to+ 1.5V at
the gate of M,. Calculate and sketch the correspond-
ing output waveform V, assuming linear operation,
and compare all your resultswith a SPICE simulation.
What is the peak current delivered to C;, during the
transient?

9.30 Determinethecompensation capacitor for the
two-stage op amp in the example in Section 9.4.3 that
givesa60° phase margin.

9.31 The Miller-compensated two-stage op amp
in Fig. 9.25 can be modeled as shown in Fig. 9.26. In
themodel, let g,,; = 0.5 MA/V, Ry = 200Kk, g,.6 =
2mA/V, R, = 100kS2, C; = 0.1 pF, and C, = 8 pF.

(a) Assume the op amp is connected in negative
feedback with f = 0.5. What is the value of C that
givesa45° phase margin? Assumetheright half-plane
(RHP) zero has been eliminated, and assume the feed-
back network does not load the op amp.

(b) What value of R, in Fig. 9.26 eliminates the
RHP zero?

9.32 Repeat Problem 9.31(a) for the common-gate
compensation schemein Fig. 9.22a.

9.33 The simple model for the common-gate M1,
in Fig. 9.22b has zero input impedance. Show that if
the common-gate stage M; is modeled with nonzero
input impedance, the compensation scheme in Fig.
9.22a introduces a zero at —g,,11/C in the amplifier
gain. To simplify thisanalysis, assumethat r,;; = oo,
y = 0, and ignore all device capacitances.

9.34 Plot alocus of the poles of (9.27) as C varies
from 0 to co. Use R; =200 k2, g, =2 mA/V,
R, = 100k2, C; = 0.1 pF, and C; = 8 pF.

9.35 For thethree-stage op amp with nested Miller
compensation in Fig. 9.30c, determine the values of
the compensation capacitors that give a 60° phase
margin when the op amp is in a unity-gain negative
feedback loop (f = 1). Assume that the zeros due to
feedforward have been eliminated. Design for com-
plex poles p, and p3. Use Ro = Ry = R, =5 Kk,
Co=0C1 = OSpF, andCZ = 6pF Usegmo = gm1 and
8m2 = 6gml-

9.36 Forthethree-stage op amp with nested Miller
compensation in Fig. 9.30c, determine the values of
the compensation capacitors that give a 45° phase
margin when the op amp is in a unity-gain negative
feedback loop (f = 1). Assume that the zeros due to
feedforward have been eliminated. Design for widely
spaced real poles. Take Ry = Ry = R, = 5k, Co =
C; =05 pF, and C, =6 pF. Use g,0= g1 and
8m2 = 6gml-

9.37 The single-stage op amp in Fig. 9.54 has a
45° phase margin when the op amp is in a unity-
gain negative feedback loop (f = 1) with an output
load capacitance C;, = 1 pF. What value of C, will
give a 60° phase margin? (Assume that the capaci-
tance at the op-amp output is dominated by C; and
the op-amp gain a,(s) can be modeled as having two
poles.)

9.38 The single-stage op amp in Fig. 9.54 has a
nondominant pole p, with |p,| =200 Mrad/s. The
op amp is in a unity-gain negative feedback loop
(f=0.

(a) If g,1 =05 mA/V, what value of C; gives
a 45° phase margin? (Assume that the capacitance at
the op amp output is dominated by C, and the op-amp
gain a(s) can be modeled as having two poles.)
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(b) If Ita. = 0.5mA, what isthe output slew rate
with thisC,?

9.39 The feedback circuit in Fig. 955 is a
switched-capacitor circuit during one clock phase.
Assumetheop ampisthetel escopic-cascodeopampin
Fig.9.54. TakeC; = 1.5pF, C; = 4pF, Cs = 0.4pF,
and C;, = 0.1 pF.

(a) If Ita = 0.2 mA, what is the output slew
rate?

(b) Assumethat g,,; = 0.1 mA/V, the loop trans-
mission [loop gain T(s) or return ratio %R(s)] can
be modeled as having two poles, and the magnitude
of the nondominant pole p, is |p,| =200 Mrad/s.
What is the phase margin of this feedback
circuit?

9.40 Calculate the return ratio for the feedback
circuit in Fig. 9.62. Assume that the amplifier voltage
gain is constant with a, > 0. Show that this feedback
circuit is always stable if each impedance is either a
resistor or a capacitor.

9.41 Cdculatethereturnratio for theintegrator in
Fig. 9.63. Show that this feedback circuit is stable for
al values of Rand C if a,(s) has two left half-plane
polesand a,(s = 0) > 0.

= 9.42.

9.42 Cadlculate the return ratio for the inverting
amplifier in Fig. 9.64. Here, the controlled source and
Cin form a simple op-amp model. Assume a,(s) =
1000/[(1 + s/100)(1 + s/10)].

(a) Assumetheop-ampinput capacitanceCi, = 0.
What is the frequency at which |%(jw)| = 1? How
doesthisfrequency compareto thefrequency at which
lay(joo)| = 1?

(b) Find the phase margin for the cases Cj, = 0,
Cin = 4 pF, and Cj, = 20 pF.

9.43 A technique that alows the return ratio to
be simulated using SPICE without disrupting the dc
operating point is shown in Fig. 8.60 and explained in
Problem 8.33.

(a) Use that technique to simulate the return ratio
for the op amp from Problem 9.21 connected in a
noninverting unity-gain configuration for f = 1 kHz,
100 kHz, 10 MHz, and 1 GHz.

(b) Use that technique to plot the magnitude and
phase of thereturn ratio. Determinethe unity-gain fre-
quency for the return ratio and the phase and gain
margins. [Note: This calculation requires combining
the complex values of %/(jw) and %, (jw) to find the
complex quantity R (jw).]
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9.44 Repeat Problem 9.43 for the circuit in
Fig. 9.64 with Ci, = 4pF. Inject thetest sourcesonthe
left-hand side of the feedback resistor. Use a, (s) from
Problem 9.42. Comparethe simulation resultswith the
calculated values from Problem 9.42.

9.45 Repeat Problem 9.43 for the loca feed-
back circuit in Fig. 9.65. For the transistor, W =
50 wm and Lgs = 0.6 um. Use the device data in
Table 2.4. Ignore the drain-body junction capacitance
(assuming it is small compared to the 2-pF load
capacitor).

REFERENCES

1. K. Ogata. Modern Control Engineering,
2nd Edition. Prentice-Hall, Englewood Cliffs, NJ,
1990.

2. P W. Tuinenga. SPICE: A Guide to Circuit
Smulation and Analysis using PSPICE, 3rd Edition.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

3. G W. Roberts and A. S. Sedra. SPICE, 2nd
Edition. Oxford Press, New York, 1997.

4. P J Hurst. “Exact Simulation of Feedback
Circuit Parameters,” |EEE Trans. on Circuitsand Sys-
tems, Vol. CAS-38, No. 11, pp. 1382-1389, November
1991.

5. P J Hurst and SH. Lewis. “Determina-
tion of Stability Using Return Ratios in Balanced
Fully Differential Feedback Circuits,” |EEE Trans.
on Circuits and Systems I, pp. 805-817, December
1995.

6. S.Rosenstark. Feedback Amplifier Principles,
MacMillan, New York, 1986.

7. R. D. Middlebrook. “Measurement of Loop
Gain in Feedback Systems,” Int. J. Electronics,
Vol. 38, No. 4, pp. 485-512, 1975.

8. J. E. Solomon. “The Monolithic Op Amp:
A Tutorial Study,” |EEE J. Solid-Sate Circuits, Vol.
SC-9, pp. 314-332, December 1974.

Figure 9.65 Circuit for Problem 9.45.

9.46 Consider a two-stage CMOS op amp mod-
eled by the equivalent circuit in Fig. 9.18, where
iy = guVig and v, is the differential op-amp input.
Letg, =19.7mA/V,R; = R, = 6.67kQ,and C; =
C, = C = 2 pF. Calculate and sketch the root locus
when feedback is applied as f variesfrom 0 to 1. Cal-
culate the real component of s for which the poles
become complex. Isthe amplifier unconditionally sta-
ble? If yes, calculate the pole positions for unity-gain
feedback. If no, find the loop gain required to cause
instability.

9. Y. P Tsividis and PR. Gray. “An Integrated
NMOS Operational Amplifier with Internal Compen-
sation,” |EEE J. Solid-Sate Circuits, Vol. SC-11,
pp. 748-753, December 1976.

10. B. K. Ahuja “An Improved Frequency
Compensation Technique for CMOS Operationa
Amplifiers,” |IEEE J. Solid-Sate Circuits, Vol. SC-18,
pp. 629633, December 1983.

11. D. B. Ribner and M. A. Copeland. “Design
Techniques for Cascoded CMOS Op Amps with
Improved PSRR and Common-Mode Input Range,”
|EEE J. Solid-Sate Circuits, pp. 919-925, December
1984.

12. D. Senderowicz, D. A. Hodges, and P R.
Gray. “A High-Performance NMOS Operational
Amplifier,” IEEE J. Solid-Sate Circuits, Vol. SC-13,
pp. 760—768, December 1978.

13. W. C. Black, D. J. Allstot, and R. A. Reed.
“A High Performance Low Power CMOS Chan-
nel Filter,” |EEE J. Solid-Sate Circuits, Vol. SC-15,
pp. 929-938, December 1980.

14. E. M. Cherry. “A New Result in Negative
Feedback Theory and Its Application to Audio Power
Amplifiers,” Int. J. Circuit Theory, Vol. 6, pp. 265—
288, July 1978.



15. J H. Huijsing and D. Linebarger. “Low-
Voltage Operational Amplifier with Rail-to-Rail Input
and Output Ranges,” |IEEE J. Solid-Sate Circuits,
Vol. 20, pp. 1144-1150. December 1985.

16. R. G H. Eschauzier and J. H. Huijsing.
Frequency Compensation Techniques for Low-Power
Operational Amplifiers. Kluwer, Dordrecht, The
Netherlands, 1995.

17. M. J. Fonderie and J. H. Huijsing. Design of
Low-Voltage Bipolar Operational Amplifiers. Kluwer
Academic Publishers, Boston, 1993.

18. F You, H. K. Embabi, and E. Sanchez-
Sinencio. “A Multistage Amplifier Topology with
Nested Gm-C Compensation,” IEEE J. Solid-
Sate Circuits, Vol. 32, pp. 2000-2011, December
1997.

19. PE.GrayandC.L. Searle. Electronic Princi-
ples: Physics, Models, and Circuits. Wiley, New York,
1969.

20. J.D’AzzoandC.Houpis. Linear Control Sys-
tem Analysis and Design: Conventional and Modern.
McGraw-Hill, New York, 1975.

References /0o

21. W.E. Hearn. “Fast Slewing Monolithic Oper-
ationa Amplifier,” IEEE J. Solid-State Circuits,
Vol. SC-6, pp. 2024, February 1971.

22. P.W. Li, M. J. Chin, P R. Gray, and R.
Castello. “A Ratio-Independent Algorithmic Analog-
to-Digital Conversion Technique,” IEEE J. Solid-Sate
Circuits, Vol. SC-19, pp. 828-836, December 1984.

23. E. Seevinck and R. Wassenaar. “A Versatile
CMOS Linear Transconductor/Square-Law Function
Circuit,” IEEE J. Solid-Sate Circuits, Vol. SC-22, pp.
366-377, June 1987.

24. FE.N.L.O.Eynde P.F.M.Ampe, L. Verdeyen,
and W. M. C. Sansen. “A CMOS Large-Swing Low-
Distortion Three-Stage Class AB Power Amplifier,”
|EEE J. Solid-State Circuits, Vol. SC-25, pp. 265-273,
February 1990.

25. H.W. Bode. Network Analysis and Feedback
Amplifier Design. Van Nostrand, New York, 1945.

26. P J Hurst. “A Comparison of Two
Approaches to Feedback Circuit Analysis,” |EEE
Trans. on Education, Vol. 35, No. 3, pp. 253-261,
August 1992.

























































































































































































































































































































































































































































































































































	Cover

	Preface

	Contents

	Ch01

	Ch02

	Ch03

	Ch04

	Ch05

	Ch06

	Ch07

	Ch08

	Ch09

	Ch10

	Ch11

	Ch12

	Index




