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Symbol Convention

Unless otherwise stated, the following symbol convention is used in this book. Bias or dc
quantities, such as transistor collector current Ic and collector-emitter voltage Vc£> are
represented by uppercase symbols with uppercase subscripts. Small-signal quantities, such
as the incremental change in transistor collector current ic, are represented by lowercase
symbols with lowercase subscripts. Elements such as transconductance gm in small-signal
equivalent circuits are represented in the same way. Finally, quantities such as total col-
lector current Ic, which represent the sum of the bias quantity and the signal quantity, are
represented by an uppercase symbol with a lowercase subscript.

































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































CHAPTER 9

Frequency Response and
Stability of Feedback
Amplifiers

9.1 Introduction
In Chapter 8, we considered the effects of negative feedback on circuit parameters such as gain
and terminal impedance. We saw that application of negative feedback resulted in a number
of performance improvements, such as reduced sensitivity of gain to active-device parameter
changes and reduction of distortion due to circuit nonlinearities.

In this chapter, we see the effect of negative feedback on the frequency response of a circuit.
The possibility of oscillation in feedback circuits is illustrated, and methods of overcoming
these problems by compensation of the circuit are described. Finally, the effect of compensation
on the large-signal high-frequency performance of feedback amplifiers is investigated.

Much of the analysis in this chapter is based on the ideal block diagram in Fig. 9.1. This
block diagram includes the forward gain a and feedback factor f, which are the parameters used
in two-port analysis of feedback circuits in Chapter 8. The equations and results in this chapter
could be expressed in terms of the parameters used in the return-ratio analysis in Chapter 8 by
an appropriate change of variables, as shown in Appendix A9.1.

The equations and relationships in this chapter are general and can be applied to any
feedback circuit. However, for simplicity we will often assume the feedback factor f is a
positive, unitless constant. One circuit that has such an f is the series-shunt feedback circuit
shown in Fig 8.24. In this circuit, the feedback network is a resistive voltage divider, so f
is a constant with 0 ≤ f ≤ 1. The forward gain a is a voltage gain that is positive at low
frequencies. This circuit gives a noninverting closed-loop voltage gain.

9.2 Relation Between Gain and Bandwidth in Feedback
Amplifiers
Chapter 8 showed that the performance improvements produced by negative feedback were
obtained at the expense of a reduction in gain by a factor (1 + T ), where T is the loop gain.
The performance specifications that were improved were also changed by the factor (1 + T ).

In addition to the foregoing effects, negative feedback also tends to broadband the ampli-
fier. Consider first a feedback circuit as shown in Fig. 9.1 with a simple basic amplifier whose
gain function contains a single pole

a(s) = a0

1 − s

p1

(9.1)

624
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f

a(s)vi vo

v  

vfb

+

–

Figure 9.1 Feedback circuit
configuration.

where a0 is the low-frequency gain of the basic amplifier and p1 is the basic-amplifier pole in
radians per second. Assume that the feedback path is purely resistive and thus the feedback
function f is a positive constant. Since Fig. 9.1 is an ideal feedback arrangement, the overall
gain is

A(s) = vo

vi

= a(s)

1 + a(s)f
(9.2)

where the loop gain is T (s) = a(s)f . Substitution of (9.1) in (9.2) gives

A(s) =

a0

1 − s

p1

1 + a0f

1 − s

p1

= a0

1 − s

p1
+ a0f

= a0

1 + a0f

1

1 − s

p1

1

1 + a0f

(9.3)

From (9.3) the low-frequency gain A0 is

A0 = a0

1 + T0
(9.4)

where

T0 = a0f = low-frequency loop gain (9.5)

The −3-dB bandwidth of the feedback circuit (i.e., the new pole magnitude) is (1 + aof ) · |p1|
from (9.3). Thus the feedback has reduced the low-frequency gain by a factor (1 + T0), which is
consistent with the results of Chapter 8, but it is now apparent that the −3-dB frequency of the
circuit has been increased by the same quantity (1 + T0). Note that the gain-bandwidth product
is constant. These results are illustrated in the Bode plots of Fig. 9.2, where the magnitudes of

Gain magnitude dB

20 log10 a0

20 log10 |a( j   )|

20 log10 |A( j   )|
20 log10

| p1 |
(1 + T0) | p1 |

a0

1 + T0

   log scale

–6 dB/octave

ω

ω

ω

Figure 9.2 Gain magnitude versus frequency for the basic amplifier and the feedback amplifier.
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(1 + T0) p1

T0 = 0

p1

σ

j  

X

Pole position
for finite T0

s plane

ω

Figure 9.3 Locus of the pole of the
circuit of Fig. 9.1 as loop gain T0

varies.

a(jω) and A(jω) are plotted versus frequency on log scales. It is apparent that the gain curves
for any value of T0 are contained in an envelope bounded by the curve of |a(jω)|.

Because the use of negative feedback allows the designer to trade gain for bandwidth,
negative feedback is widely used as a method for designing broadband amplifiers. The gain
reduction that occurs is made up by using additional gain stages, which in general are also
feedback amplifiers.

Let us now examine the effect of the feedback on the pole of the overall transfer function
A(s). It is apparent from (9.3) that as the low-frequency loop gain T0 is increased, the magnitude
of the pole of A(s) increases. This is illustrated in Fig. 9.3, which shows the locus of the pole
of A(s) in the s plane as T0 varies. The pole starts at p1 for T0 = 0 and moves out along
the negative real axis as T0 is made positive. Figure 9.3 is a simple root-locus diagram and
will be discussed further in Section 9.5.

9.3 Instability and the Nyquist Criterion1

In the above simple example the basic amplifier was assumed to have a single-pole trans-
fer function, and this situation is closely approximated in practice by internally compensated
general-purpose op amps. However, many amplifiers have multipole transfer functions that
cause deviations from the above results. The process of compensation overcomes these prob-
lems, as will be seen later.

Consider an amplifier with a three-pole transfer function

a(s) = a0(
1 − s

p1

) (
1 − s

p2

) (
1 − s

p3

) (9.6)

where |p1|, |p2|, and |p3| are the pole magnitudes in rad/s. The poles are shown in the s plane
in Fig. 9.4 and gain magnitude |a(jω)| and phase ph a(jω) are plotted versus frequency in
Fig. 9.5 assuming about a factor of 10 separation between the poles. Only asymptotes are

p1

σ

jω

X
p2

X
p3

X

s plane

Figure 9.4 Poles of an amplifier in
the s plane.
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Figure 9.5 Gain and phase versus frequency for a circuit with a three-pole transfer function.

shown for the magnitude plot. At frequencies above the first pole magnitude |p1|, the plot
of |a(jω)| falls at 6 dB/octave and ph a(jω) approaches −90◦. Above |p2| these become 12
dB/octave and −180◦, and above |p3| they become 18 dB/octave and −270◦. The frequency
where ph a(jω) = −180◦ has special significance and is marked ω180, and the value of |a(jω)|
at this frequency is a180. If the three poles are fairly widely separated (by a factor of 10 or
more), the phase shifts at frequencies |p1|, |p2|, and |p3| are approximately −45◦, −135◦, and
−225◦, respectively. This will now be assumed for simplicity. In addition, the gain magnitude
will be assumed to follow the asymptotic curve and the effect of these assumptions in practical
cases will be considered later.

Now consider this amplifier connected in a feedback loop as in Fig. 9.1 with f a positive
constant. Since f is constant, the loop gain T (jω) = a(jω)f will have the same variation with
frequency as a(jω). A plot of af (jω) = T (jω) in magnitude and phase on a polar plot (with ω

as a parameter) can thus be drawn using the data of Fig. 9.5 and the magnitude of f. Such a plot
for this example is shown in Fig. 9.6 (not to scale) and is called a Nyquist diagram. The variable
on the curve is frequency and varies from ω = −∞ to ω = ∞. For ω = 0, |T (jω)| = T0 and
ph T (jω) = 0, and the curve meets the real axis with an intercept T0. As ω increases, as
Fig. 9.5 shows, |a(jω)| decreases and ph a(jω) becomes negative and thus the plot is in the
fourth quadrant. As ω → ∞, ph a(jω) → −270◦ and |a(jω)| → 0. Consequently, the plot is
asymptotic to the origin and is tangent to the imaginary axis. At the frequency ω180 the phase is
−180◦ and the curve crosses the negative real axis. If |a(jω180)f | > 1 at this point, the Nyquist
diagram will encircle the point (−1, 0) as shown, and this has particular significance, as will
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Figure 9.6 Nyquist diagram [polar plot of T (jω) in magnitude and phase] corresponding to the
characteristic of Fig. 9.5 (not to scale).

now become apparent. For the purposes of this treatment, the Nyquist criterion for stability of
the amplifier can be stated as follows:

“Consider a feedback amplifier with a stable T (s) (i.e., all poles of T (s) are in the left
half-plane). If the Nyquist plot of T (jω) encircles the point (−1, 0), the feedback amplifier is
unstable.”

This criterion simply amounts to a mathematical test for poles of transfer function A(s)
in the right half-plane. If the Nyquist plot encircles the point (−1, 0), the amplifier has poles
in the right half-plane and the circuit will oscillate. In fact the number of encirclements of the
point (−1, 0) gives the number of right half-plane poles and in this example there are two. The
significance of poles in the right half-plane can be seen by assuming that a circuit has a pair of
complex poles at (σ1 � jω1) where σ1 is positive. The transient response of the circuit then
contains a term K1 exp σ1t sin ω1t, which represents a growing sinusoid if σ1 is positive. (K1
is a constant representing initial conditions.) This term is then present even if no further input
is applied, and a circuit behaving in this way is said to be unstable or oscillatory.

The significance of the point (−1, 0) can be appreciated if the Nyquist diagram is assumed
to pass through this point. Then at the frequency ω180, T (jω) = a(jω)f = −1 and A(jω) = ∞
using (9.2) in the frequency domain. The feedback amplifier is thus calculated to have a
forward gain of infinity, and this indicates the onset of instability and oscillation. This situation
corresponds to poles of A(s) on the jω axis in the s plane. If T0 is then increased by increasing
a0 or f, the Nyquist diagram expands linearly and then encircles (−1, 0). This corresponds to
poles of A(s) in the right half-plane, as shown in Fig. 9.7.

From the above criterion for stability, a simpler test can be derived that is useful in most
common cases.

“If |T (jω)| > 1 at the frequency where ph T (jω) = −180◦, then the amplifier is unstable.”
The validity of this criterion for the example considered here is apparent from inspection of
Fig. 9.6 and application of the Nyquist criterion.

In order to examine the effect of feedback on the stability of an amplifier, consider the
three-pole amplifier with gain function given by (9.6) to be placed in a negative-feedback loop
with f constant. The gain (in decibels) and phase of the amplifier are shown again in Fig. 9.8,
and also plotted is the quantity 20 log10 1/f . The value of 20 log10 1/f is approximately equal
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Figure 9.8 Amplifier gain and phase versus frequency showing the phase margin.

to the low-frequency gain in decibels with feedback applied since

A0 = a0

1 + a0f
(9.7)

and thus

1

f
≈ A0 (9.8)
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if

T0 = a0f � 1

Consider the vertical distance between the curve of 20 log10 |a(jω)| and the line
20 log10 1/f in Fig. 9.8. Since the vertical scale is in decibels this quantity is

x = 20 log10 |a(jω)| − 20 log10 1/f
(9.9)

= 20 log10 |a(jω)f |
= 20 log10 |T (jω)| (9.10)

Thus the distance x is a direct measure in decibels of the loop-gain magnitude, |T (jω)|.
The point where the curve of 20 log10 |a(jω)| intersects the line 20 log10 1/f is the point where
the loop-gain magnitude |T (jω)| is 0 dB or unity, and the curve of |a(jω)| in decibels in
Fig. 9.8 can thus be considered a curve of |T (jω)| in decibels if the dotted line at 20 log10 1/f

is taken as the new zero axis.
The simple example of Section 9.1 showed that the gain curve versus frequency with

feedback applied (20 log10 |A(jω)|) follows the 20 log10 A0 line until it intersects the gain
curve 20 log10 |a(jω)|. At higher frequencies the curve 20 log10 |A(jω)| simply follows the
curve of 20 log10 |a(jω)| for the basic amplifier. The reason for this is now apparent in that at
the higher frequencies the loop gain |T (jω)| → 0 and the feedback then has no influence on
the gain of the amplifier.

Figure 9.8 shows that the loop-gain magnitude |T (jω)| is unity at frequency ω0. At this
frequency the phase of T (jω) has not reached −180◦ for the case shown, and using the
modified Nyquist criterion stated above we conclude that this feedback loop is stable. Obvi-
ously |T (jω)| < 1 at the frequency where ph T (jω) = −180◦. If the polar Nyquist diagram is
sketched for this example, it does not encircle the point (−1, 0).

As |T (jω)| is made closer to unity at the frequency where ph T (jω) = −180◦, the amplifier
has a smaller margin of stability, and this can be specified in two ways. The most common is
the phase margin, which is defined as follows:

Phase margin = 180◦+ (ph T (jω) at frequency where |T (jω)| = 1). The phase margin is
indicated in Fig. 9.8 and must be greater than 0◦ for stability.

Another measure of stability is the gain margin. This is defined to be 1/|T (jω)| in decibels
at the frequency where ph T (jω) = −180◦, and this must be greater than 0 dB for stability.

The significance of the phase-margin magnitude is now explored. For the feedback ampli-
fier considered in Section 9.1, where the basic amplifier has a single-pole response, the phase
margin is obviously 90◦ if the low-frequency loop gain is reasonably large. This is illustrated
in Fig. 9.9 and results in a very stable amplifier. A typical lower allowable limit for the phase
margin in practice is 45◦, with a value of 60◦ being more common.

Consider a feedback amplifier with a phase margin of 45◦ and a feedback function f that
is real (and thus constant). Then

ph T (jω0) = −135◦ (9.11)

where ω0 is the frequency defined by

|T (jω0)| = 1 (9.12)

Now |T (jω0)| = |a(jω0)f | = 1 implies that

|a(jω0)| = 1

f
(9.13)

assuming that f is positive real.
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Figure 9.9 Gain and phase versus frequency for a single-pole basic amplifier showing the phase
margin for a low-frequency loop gain T0.

The overall gain is

A(jω) = a(jω)

1 + T (jω)
(9.14)

Substitution of (9.11) and (9.12) in (9.14) gives

A(jω0) = a(jω0)

1 + e−j135◦ = a(jω0)

1 − 0.7 − 0.7j
= a(jω0)

0.3 − 0.7j

and thus

|A(jω0)| = |a(jω0)|
0.76

= 1.3

f
(9.15)

using (9.13).
The frequency ω0, where |T (jω0)| = 1, is the nominal −3-dB point for a single-pole basic

amplifier, but in this case there is 2.4 dB (1.3 ×) of peaking above the low-frequency gain of 1/f .
Consider a phase margin of 60◦. At the frequency ω0 in this case

ph T (jω0) = −120◦ (9.16)

and

|T (jω0)| = 1 (9.17)

Following a similar analysis we obtain

|A(jω0)| = 1

f

In this case there is no peaking at ω = ω0, but there has also been no gain reduction at this
frequency.

Finally, the case where the phase margin is 90◦ can be similarly calculated. In this case

ph T (jω0) = −90◦ (9.18)
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and

|T (jω0)| = 1 (9.19)

A similar analysis gives

|A(jω0)| = 0.7

f
(9.20)

As expected in this case, the gain at frequency ω0 is 3 dB below the midband value.
These results are illustrated in Fig. 9.10, where the normalized overall gain versus fre-

quency is shown for various phase margins. The plots are drawn assuming the response is
dominated by the first two poles of the transfer function, except for the case of the 90◦ phase
margin, which has one pole only. As the phase margin diminishes, the gain peak becomes
larger until the gain approaches infinity and oscillation occurs for phase margin = 0◦. The gain
peak usually occurs close to the frequency where |T (jω)| = 1, but for a phase margin of 60◦
there is 0.2 dB of peaking just below this frequency. Note that after the peak, the gain curves
approach an asymptote of −12 dB/octave for phase margins other than 90◦. This is because the
open-loop gain falls at −12 dB/octave due to the presence of two poles in the transfer function.

The simple tests for stability of a feedback amplifier (i.e., positive phase and gain margins)
can only be applied when the phase and gain margins are uniquely defined. The phase margin
is uniquely defined if there is only one frequency at which the magnitude of the loop gain
equals one. Similarly, the gain margin is uniquely defined if there is only one frequency at
which the phase of the loop gain equals −180◦. In most feedback circuits, these margins are
uniquely defined. However, if either of these margins is not uniquely defined, then stability
should be checked using a Nyquist diagram and the Nyquist criterion.
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Figure 9.10 Normalized overall gain for feedback amplifiers versus normalized frequency for various
phase margins. Frequency is normalized to the frequency where the loop gain is unity.
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The loop gain T = af can be examined to determine the stability of a feedback circuit, as
explained in this section. Alternatively these measures of stability can be applied to the return
ratio �, as explained in Appendix A9.1. Techniques for simulating �2–5 and T = af 4 using
SPICE have been developed, based on methods for measuring loop transmission.6,7 These
techniques measure the loop transmission at the closed-loop dc operating point. An advantage
of SPICE simulation of the loop transmission is that parasitics that might have an important
effect are included. For example, parasitic capacitance at the op-amp input introduces frequency
dependence in the feedback network in Fig. 8.24, which may degrade the phase margin.

9.4 Compensation
9.4.1 Theory of Compensation

Consider again the amplifier whose gain and phase is shown in Fig. 9.8. For the feedback
circuit in which this was assumed to be connected, the forward gain was A0, as shown in Fig.
9.8, and the phase margin was positive. Thus the circuit was stable. It is apparent, however, that
if the amount of feedback is increased by making f larger (and thus A0 smaller), oscillation
will eventually occur. This is shown in Fig. 9.11, where f1 is chosen to give a zero phase
margin and the corresponding overall gain is A1 � 1/f1. If the feedback is increased to f2
(and A2 � 1/f2 is the overall gain), the phase margin is negative and the circuit will oscillate.
Thus if this amplifier is to be used in a feedback loop with loop gain larger than a0f1, efforts
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Figure 9.11 Gain and phase versus frequency for a three-pole basic amplifier. Feedback factor f1

gives a zero phase margin and factor f2 gives a negative phase margin.
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must be made to increase the phase margin. This process is known as compensation. Note that
without compensation, the forward gain of the feedback amplifier cannot be made less than
A1 � 1/f1 because of the oscillation problem.

The simplest and most common method of compensation is to reduce the bandwidth of
the amplifier (often called narrowbanding). That is, a dominant pole is deliberately introduced
into the amplifier to force the phase shift to be less than −180◦ when the loop gain is unity.
This involves a direct sacrifice of the frequency capability of the amplifier.

If f is constant, the most difficult case to compensate is f = 1, which is a unity-gain
feedback configuration. In this case the loop-gain curve is identical to the gain curve of the basic
amplifier. Consider this situation and assume that the basic amplifier has the same characteristic
as in Fig. 9.11. To compensate the amplifier, we introduce a new dominant pole with magnitude
|pD|, as shown in Fig. 9.12, and assume that this does not affect the original amplifier poles
with magnitudes |p1|, |p2|, and |p3|. This is often not the case but is assumed here for purposes
of illustration.

The introduction of the dominant pole with magnitude |pD| into the amplifier gain function
causes the gain magnitude to decrease at 6 dB/octave until frequency |p1| is reached, and over
this region the amplifier phase shift asymptotes to −90◦. If frequency |pD| is chosen so that the
gain |a(jω)| is unity at frequency |p1| as shown, then the loop gain is also unity at frequency
|p1| for the assumed case of unity feedback with f = 1. The phase margin in this case is then
45◦, which means that the amplifier is stable. The original amplifier would have been unstable
in such a feedback connection.
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Figure 9.12 Gain and phase versus frequency for a three-pole basic amplifier. Compensation for
unity-gain feedback operation (f = 1) is achieved by introduction of a negative real pole with
magnitude |pD|.
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The price that has been paid for achieving stability in this case is that with the feedback
removed, the basic amplifier has a unity-gain bandwidth of only |p1|, which is much less
than before. Also, with feedback applied, the loop gain now begins to decrease at a frequency
|pD|, and all the benefits of feedback diminish as the loop gain decreases. For example, in
Chapter 8 it was shown that shunt feedback at the input or output of an amplifier reduces the
basic terminal impedance by [1 + T (jω)]. Since T (jω) is frequency dependent, the terminal
impedance of a shunt-feedback amplifier will begin to rise when |T (jω)| begins to decrease.
Thus the high-frequency terminal impedance will appear inductive, as in the case of z0 for an
emitter follower, which was calculated in Chapter 7. (See Problem 9.8.)

EXAMPLE

Calculate the dominant-pole magnitude required to give unity-gain compensation of the 702
op amp with a phase margin of 45◦. The low-frequency gain is a0 = 3600 and the circuit has
poles at −(p1/2π) = 1 MHz, −(p2/2π) = 4 MHz, and −(p3/2π) = 40 MHz.

In this example, the second pole p2 is sufficiently close to p1 to produce significant
phase shift at the amplifier −3-dB frequency. The approach to this problem will be to use the
approximate results developed above to obtain an initial estimate of the required dominant-pole
magnitude and then to empirically adjust this estimate to obtain the required results.

The results of Fig. 9.12 indicate that a dominant pole with magnitude |pD| should be
introduced so that gain a0 = 3600 is reduced to unity at |p1/2π| = 1 MHz with a 6-dB/octave
decrease as a function of frequency. The product |a|ω is constant where the slope of the
gain-magnitude plot is −6 dB/octave; therefore

∣∣∣pD

2π

∣∣∣ = 1

a0

∣∣∣p1

2π

∣∣∣ = 106

3600
Hz = 278 Hz

This would give a transfer function

a(jω) = 3600(
1 + jω

|pD|
) (

1 + jω

|p1|
) (

1 + jω

|p2|
) (

1 + jω

|p3|
) (9.21)

where the pole magnitudes are in radians per second. Equation 9.21 gives a unity-gain fre-
quency [where |a(jω)| = 1] of 780 kHz. This is slightly below the design value of 1 MHz
because the actual gain curve is 3 dB below the asymptote at the break frequency |p1|. At
780 kHz the phase shift obtained from (9.21) is −139◦ instead of the desired −135◦ and this
includes a contribution of −11◦ from pole p2. Although this result is close enough for most
purposes, a phase margin of precisely 45◦ can be achieved by empirically reducing |pD| until
(9.21) gives a phase shift of −135◦ at the unity gain frequency. This occurs for |pD/2π| =
260 Hz, which gives a unity-gain frequency of 730 kHz.

Consider now the performance of the amplifier whose characteristic is shown in Fig.
9.12 (with dominant pole magnitude |pD|) when used in a feedback loop with f < 1 (i.e.,
overall gain A0 > 1). This case is shown in Fig. 9.13. The loop gain now falls to unity at
frequency ωx and the phase margin of the circuit is now approximately 90◦. The −3-dB
bandwidth of the feedback circuit is ωx. The circuit now has more compensation than is
needed, and, in fact, bandwidth is being wasted. Thus, although it is convenient to compensate
an amplifier for unity gain and then use it unchanged for other applications (as is done in
many op amps), this procedure is quite wasteful of bandwidth. Fixed-gain amplifiers that are
designed for applications where maximum bandwidth is required are usually compensated for
a specified phase margin (typically 45◦ to 60◦) at the required gain value. However, op amps are
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Figure 9.13 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f = 1 and a phase margin of 45◦. The phase margin is shown for operation in a feedback loop
with f < 1.

general-purpose circuits that are used with differing feedback networks with f values ranging
from 0 to 1. Optimum bandwidth is achieved in such circuits if the compensation is tailored
to the gain value required, and this approach gives much higher bandwidths for high gain
values, as seen in Fig. 9.14. This figure shows compensation of the amplifier characteristic of
Fig. 9.11 for operation in a feedback circuit with forward gain A0. A dominant pole is added
with magnitude |p′

D| to give a phase margin of 45◦. Frequency |p′
D| is obviously � |pD|,

and the −3-dB bandwidth of the feedback amplifier is nominally |p1|, at which frequency the
loop gain is 0 dB (disregarding peaking). The −3-dB frequency from Fig. 9.13 would be only
ωx = |p1|/A0 if unity-gain compensation had been used. Obviously, since A0 can be large,
the improvement in bandwidth is significant.

In the compensation schemes discussed above, an additional dominant pole was assumed
to be added to the amplifier, and the original amplifier poles were assumed to be unaffected by
this procedure. In terms of circuit bandwidth, a much more efficient way to compensate the
amplifier is to add capacitance to the circuit in such a way that the original amplifier dominant
pole magnitude |p1| is reduced so that it performs the compensation function. This technique
requires access to the internal nodes of the amplifier, and knowledge of the nodes in the circuit
where added capacitance will reduce frequency |p1|.

Consider the effect of compensating for unity-gain operation the amplifier characteristic
of Fig. 9.11 in this way. Again assume that higher frequency poles p2 and p3 are unaffected
by this procedure. In fact, depending on the method of compensation, these poles are usually
moved up or down in magnitude by the compensation. This point will be taken up later.
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Figure 9.14 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f < 1 and a phase margin of 45◦. Compensation is achieved by adding a new pole p′

D to the
amplifier.

Compensation of the amplifier by reducing |p1| is shown in Fig. 9.15. For a 45◦-phase
margin in a unity-gain feedback configuration, dominant pole magnitude |p′

1| must cause the
gain to fall to unity at frequency |p2| (the second pole magnitude). Thus the nominal bandwidth
in a unity-gain configuration is |p2|, and the loop gain is unity at this frequency. This result
can be contrasted with a bandwidth of |p1|, as shown in Fig. 9.12 for compensation achieved
by adding another pole with magnitude |pD| to the amplifier. In practical amplifiers, frequency
|p2| is often 5 or 10 times frequency |p1| and substantial improvements in bandwidth are thus
achieved.

The results of this section illustrate why the basic amplifier of a feedback circuit is usually
designed with as few stages as possible. Each stage of gain inevitably adds more poles to the
transfer function, complicating the compensation problem, particularly if a wide bandwidth is
required.

9.4.2 Methods of Compensation

In order to compensate a circuit by the common method of narrowbanding described above,
it is necessary to add capacitance to create a dominant pole with the desired magnitude. One
method of achieving this is shown in Fig. 9.16, which is a schematic of the first two stages
of a simple amplifier. A large capacitor C is connected between the collectors of the input
stage. The output stage, which is assumed relatively broadband, is not shown. A differential
half-circuit of Fig. 9.16 is shown in Fig. 9.17, and it should be noted that the compensation
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Figure 9.15 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f = 1 and a phase margin of 45◦. Compensation is achieved by reducing the magnitude |p1| of
the dominant pole of the original amplifier.
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Figure 9.16 Compensation of an amplifier by introduction of a large capacitor C.

capacitor is doubled in the half-circuit. The major contributions to the dominant pole of a
circuit of this type (if RS is not large) come from the input capacitance of Q4 and Miller
capacitance associated with Q4. Thus the compensation as shown will reduce the magnitude
of the dominant pole of the original amplifier so that it performs the required compensation
function. Almost certainly, however, the higher frequency poles of the amplifier will also be
changed by the addition of C. In practice, the best method of approaching the compensation
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Figure 9.17 Differential half-circuit of Fig. 9.16.

design is to use computer simulation to determine the original pole positions. A first estimate of
C is made on the assumption that the higher frequency poles do not change in magnitude and a
new computer simulation is made with C included to check this assumption. Another estimate
of C is then made on the basis of the new simulation, and this process usually converges after
several iterations.

The magnitude of the dominant pole of Fig. 9.17 can be estimated using zero-value time
constant analysis. However, if the value of C required is very large, this capacitor will dominate
and a good estimate of the dominant pole can be made by considering C only and ignoring
other circuit capacitance. In that case the dominant-pole magnitude is

|pD| = 1

2CR
(9.22)

where

R = RL1||Ri4 (9.23)

and

Ri4 = rb4 + rπ4 (9.24)

One disadvantage of the above method of compensation is that the value of C required is quite
large (typically > 1000 pF) and cannot be realized on a monolithic chip.

Many general-purpose op amps have unity-gain compensation included on the monolithic
chip and require no further compensation from the user. (The sacrifice in bandwidth caused by
this technique when using gain other than unity was described earlier.) In order to realize an
internally compensated monolithic op amp, compensation must be achieved using capacitance
less than about 50 pF. This can be achieved using Miller multiplication of the capacitance as
in the 741 op amp, which uses a 30 pF compensation capacitor and was analyzed in previous
editions of this book.

As well as allowing use of a small capacitor that can be integrated on the monolithic chip,
this type of compensation has another significant advantage. This is due to the phenomenon
of pole splitting,8 in which the dominant pole moves to a lower frequency while the next
pole moves to a higher frequency. The splitting of the two low-frequency poles in practical
op amps is often a rather complex process involving other higher frequency poles and zeros
as well. However, the process involved can be illustrated with the two-stage op-amp model in
Fig. 9.18. The input is from from a current is, which stems from the transconductance of the first
stage times the op-amp differential input voltage. Resistors R1 and R2 represent the total shunt
resistances at the output of the first and second stages, including transistor input and output
resistances. Similarly, C1 and C2 represent the total shunt capacitances at the same places.
Capacitor C represents transistor collector-base capacitance of the amplifying transistor in the
second stage plus the compensation capacitance.
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Figure 9.18 Small-signal equivalent circuit of a single transistor stage. Feedback capacitor C includes
compensation capacitance.

For the circuit of Fig. 9.18,

−is = v1

R1
+ v1C1s + (v1 − vo)Cs (9.25)

gmv1 + vo

R2
+ voC2s + (vo − v1)Cs = 0 (9.26)

From (9.25) and (9.26)

vo

is
= (gm − Cs)R2R1

1 + s[(C2 + C)R2 + (C1 + C)R1 + gmR2R1C] + s2R2R1(C2C1 + CC2 + CC1)

(9.27)

The circuit transfer function has a positive real zero at

z = gm

C
(9.27a)

which usually has such a large magnitude in bipolar circuits that it can be neglected. This is
often not the case in MOS circuits because of their lower gm. This point is taken up later.

The circuit has a two-pole transfer function. If p1 and p2 are the poles of the circuit, then
the denominator of (9.27) can be written

D(s) =
(

1 − s

p1

) (
1 − s

p2

)
(9.28)

= 1 − s

(
1

p1
+ 1

p2

)
+ s2

p1p2
(9.29)

and thus

D(s) � 1 − s

p1
+ s2

p1p2
(9.30)

if the poles are real and widely separated, which is usually true. Note that p1 is assumed to be
the dominant pole.

If the coefficients in (9.27) and (9.30) are equated then

p1 = − 1

(C2 + C)R2 + (C1 + C)R1 + gmR2R1C
(9.31)

and this can be approximated by

p1 � − 1

gmR2R1C
(9.32)
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since the Miller effect due to C will be dominant if C is large and gmR1, gmR2 � 1. Equation
9.31 is the same result for the dominant pole as is obtained using zero-value time constant
analysis.

The nondominant pole p2 can now be estimated by equating coefficients of s2 in (9.27)
and (9.30) and using (9.32).

p2 � − gmC

C2C1 + C(C2 + C1)
(9.33)

Equation 9.32 indicates that the dominant-pole magnitude |p1| decreases as C increases,
whereas (9.33) shows that |p2| increases as C increases. Thus, increasing C causes the poles
to split apart. The dominant pole moves to a lower frequency because increasing C increases
the time constant associated with the output node of the first stage in Fig. 9.18. The reason the
nondominant pole moves to a higher frequency is explained below.

Equation 9.33 can be interpreted physically by associating p2 with the output node in Fig.
9.18. Then

p2 = − 1

RoCT

(9.33a)

where Ro is the output resistance including negative feedback around the second stage through
C, and CT is the total capacitance from the output node to ground. The output resistance is

Ro = R2

1 + T
(9.33b)

where R2 is the open-loop output resistance, and T is the loop gain around the second stage
through capacitor C, which is the open-loop gain, gmR2, times the feedback factor, f. Therefore,

Ro = R2

1 + gmR2f
� 1

gmf
(9.33c)

assuming that T = gmR2f � 1. Since p2 is a high frequency, we will find f at high frequency
ω, where 1/ωC1 	 R1. Then the feedback around the second stage is controlled by a capacitive
voltage divider and

f � C

C + C1
(9.33d)

Thus,

Ro � C + C1

gmC
(9.33e)

The total capacitance from the output node to ground is C2 in parallel with the series combi-
nation of C and C1:

CT = C2 + CC1

C + C1
= CC2 + C1C2 + CC1

C + C1
(9.33f)

Substituting (9.33e) and (9.33f) into (9.33a) gives (9.33).
Equations 9.33d and 9.33f show that increasing C increases the feedback factor but has

little effect on the total capacitance in shunt with the output node because C is in series with
C1. As a result, increasing C reduces the output resistance and increases the frequency of
the nondominant pole. In the limit as C → ∞, the feedback factor approaches unity, and
p2 → −gm/(C2 + C1). In practice, however, (9.33d) shows that the feedback factor is less
than unity, which limits the increase in the magnitude of the nondominant pole frequency.
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Figure 9.19 Locus of the poles of the circuit of Fig. 9.18 as C is increased from zero, for the case
−1/(R1C1) > −1/(R2C2).

On the other hand, with C = 0, the poles of the circuit of Fig. 9.18 are

p1 = − 1

R1C1
(9.34a)

p2 = − 1

R2C2
(9.34b)

Thus as C increases from zero, the locus of the poles of the circuit of Fig. 9.18 is as shown in
Fig. 9.19.

Another explanation of pole splitting is as follows. The circuit in Fig. 9.18 has two poles.
The compensation capacitor across the second stage provides feedback and causes the second
stage to act like an integrator. The two poles split apart as C increases. One pole moves to a low
frequency (toward dc), and the other moves to a high frequency (toward −∞) to approximate
an ideal integrator, which has only one pole at dc.

The previous calculations have shown how compensation of an amplifier by addition of
a large Miller capacitance to a single transistor stage causes the nondominant pole to move
to a much higher frequency. For the sake of comparison, consider compensating the circuit in
Fig. 9.18 without adding capacitance to C by making C1 large enough to produce a dominant
pole. Then the pole can be calculated from (9.31) as p1 � −1/R1C1. The nondominant pole
can be estimated by equating coefficients of s2 in (9.27) and (9.30) and using this value of p1.
This gives p2 � −1/R2(C2 + C). This value of p2 is approximately the same as that given by
(9.34b), which is for C = 0 and is before pole splitting occurs. Thus, creation of a dominant
pole in the circuit of Fig. 9.18 by making C1 large will result in a second pole magnitude
|p2| that is much smaller than that obtained if the dominant pole is created by increasing
C. As a consequence, the realizable bandwidth of the circuit when compensated in this way
is much smaller than that obtained with Miller-effect compensation. Also, without using the
Miller effect, the required compensation capacitor often would be too large to be included on
a monolithic chip. The same general conclusions are true in the more complex situation that
exists in many practical op amps.

The results derived in this section are useful in further illuminating the considerations of
Section 7.3.3. In that section, it was stated that in a common-source cascade, the existence of
drain-gate capacitance tends to cause pole splitting and to produce a dominant-pole situation. If
the equivalent circuit of Fig. 9.18 is taken as a representative section of a cascade of common-
source stages (C2 is the input capacitance of the following stage) and capacitor C is taken as
Cgd , the calculations of this section show that the presence of Cgd does, in fact, tend to produce
a dominant-pole situation because of the pole splitting that occurs. Thus, the zero-value time
constant approach gives a good estimate of ω−3dB in such circuits.

The theory of compensation that was developed in this chapter was illustrated with some
bipolar-transistor circuit examples. The theory applies in general to any active circuit, but the
unique device parameters of MOSFETs cause some of the approximations that were made in
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the preceding analyses to become invalid. The special aspects of MOS amplifier compensation
are now considered.

9.4.3 Two-Stage MOS Amplifier Compensation

The basic two-stage CMOS op amp topology shown in Fig. 6.16 is essentially identical to
its bipolar counterpart. As a consequence, the equivalent circuit of Fig. 9.18 can be used to
represent the second stage with its compensation capacitance. The poles of the circuit are
again given by (9.32) and (9.33) and the zero by (9.27a). In the case of the MOS transistor,
however, the value of gm is typically an order of magnitude lower than for a bipolar transistor,
and the break frequency caused by the right half-plane zero in (9.27) may actually fall below
the nominal unity-gain frequency of the amplifier. The effect of this is shown in Fig. 9.20. At
the frequency |z| the gain characteristic of the amplifier flattens out because of the contribution
to the gain of +6 dB/octave from the zero. In the same region the phase is made 90◦ more
negative by the positive real zero. As a consequence, the amplifier will have negative phase
margin and be unstable when the influence of the next most dominant pole is felt. In effect,
the zero halts the gain roll-off intended to stabilize the amplifier and simultaneously pushes
the phase in the negative direction. Note also from (9.33) that the low gm of the MOSFET will
tend to reduce the value of |p2| relative to a bipolar amplifier.

Another way to view this problem is to note from Fig. 9.18 that at high frequencies,
feedforward through C tends to overwhelm the normal gain path via gm of the second stage

dB

|p1| |p2|
   (log scale)
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–45°
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vi|     ( j   )|

vo
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ω

ω

   (log scale)ω

ω

Figure 9.20 Typical gain and phase of the CMOS op amp of Fig. 6.16.
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if gm is small. The feedforward path does not have the 180◦ phase shift of the normal gain
stage, and thus the gain path loses an inverting stage. Any feedback applied around the overall
amplifier will then be positive instead of negative feedback, resulting in oscillation. At very
high frequencies, C acts like a short circuit, diode-connecting the second stage, which then
simply presents a resistive load of 1/gm to the first stage, again showing the loss of 180◦ of
phase shift.

The right half-plane (RHP) zero is caused by the interaction of current from the gm

generator and the frequency-dependent current that flows forward from the input node to the
output node through C. The current through C in Fig. 9.18 is

ic = sC(vo − v1) (9.35)

This current can be broken into two parts: a feedback current ifb = sCvo that flows from the
output back toward the input and a feedforward current iff = sCv1 that flows forward from
the input toward the output. This feedforward current is related to v1. The current gmv1 from
the controlled source flows out of the output node and is also related to v1. Subtracting these
two currents gives the total current at the output node that is related to v1:

iv1 = (gm − sC)v1 (9.36)

A zero exists in the transfer function where this current equals zero, at z = gm/C.
Three techniques have been used to eliminate the effect of the RHP zero. One approach

is to put a source follower in series with the compensation capacitor,9 as shown in Fig. 9.21a.
The source follower blocks feedforward current through C from reaching the output node and
therefore eliminates the zero. This will be shown by analyzing Fig. 9.18 with C replaced by the
model in Fig. 9.21b. Here the source follower is modeled as an ideal voltage buffer. Equation
9.25 still holds because the same elements are connected to the input node and the voltage
across C remains vo − v1. However, summing currents at the output node gives a different
equation than (9.26) because no current flows through C to the output node due to the buffer.
The new equation is

gmv1 + vo

R2
+ sC2vo = 0 (9.37)

Combining this equation with (9.25) gives

vo

is
= gmR1R2

1 + s[R1(C1 + C) + R2C2 + gmR2R1C] + s2R1R2C2(C1 + C)
(9.38)

(a) (b)

–VSS
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C Cv1 v1
Cv1vo

vo

vo
×1

Figure 9.21 (a) Compensation capacitor C in Fig. 9.18 is replaced by C in series with a source follower.
(b) A simple model for the capacitor and source follower.
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The zero has been eliminated. Assuming gmR1, gmR2 � 1 and C is large, the same steps that
led from (9.27) to (9.32) and (9.33) give

p1≈ − 1

gmR2R1C
(9.39a)

p2≈ − gmC

(C1 + C)C2
≈ −gm

C2
(9.39b)

The dominant pole p1 is unchanged, and p2 is about the same as before if C2 � C1. This
approach eliminates the zero, but the follower requires extra devices and bias current. Also,
the source follower has a nonzero dc voltage between its input and output. This voltage will
affect the output voltage swing since the source-follower transistor must remain in the active
region to maintain the desired feedback through C.

Asecond approach to eliminate the RHP zero is to block the feedforward current through C
using a common-gate transistor, 10 as illustrated in Fig. 9.22a. This figure shows a two-stage op
amp, with the addition of two current sources of value I2 and transistor M11. The compensation
capacitor is connected from the op-amp output to the source of M11. Here, common-gate M11
allows capacitor current to flow from the output back toward the input of the second stage.
However, the impedance looking into the drain of M11 is very large. Therefore, feedforward
current through C is very small. If the feedforward current is zero, the RHP zero is eliminated.
A simplified small-signal model for the common-gate stage and compensation capacitor is
shown in Fig. 9.22b. Here common-gate M11 is modeled as an ideal current buffer. Replacing
C in Fig. 9.18 with the model in Fig. 9.22b yields

−is = v1

R1
+ v1C1s − voCs (9.40a)

gmv1 + vo

R2
+ voCs + voC2s = 0 (9.40b)
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Figure 9.22 (a) A two-stage CMOS op amp with
common-gate M11 connected to compensation
capacitor C. (b) Simple small-signal model for M11

and C.
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Combining these equations gives

vo

is
= gmR1R2

1 + s[R1C1 + R2(C + C2) + gmR1R2C] + s2R1R2C1(C2 + C)
(9.41)

The zero has been eliminated. Again assuming gmR1, gmR2 � 1 and C is large, the poles are

p1≈ − 1

gmR2R1C
(9.42a)

p2≈ − gm

C + C2
· C

C1
(9.42b)

The dominant pole is the same as before. However, the nondominant pole p2 is different. This
p2 is at a higher frequency than in the two previous approaches because C � C1 when C
and C2 are comparable. (In this section, we assume that the two-stage MOS op amp in Fig.
9.18 drives a load capacitor C2 that is much larger than parasitic capacitance C1; therefore
C2 � C1.) Therefore, a smaller compensation capacitor C can be used here for a given load
capacitance C2, when compared to the previous approaches. The increase in |p2| arises because
the input node is not connected to, and therefore is not loaded by, the compensation capacitor.
An advantage of this scheme is that it provides better high-frequency negative-power-supply
rejection than Miller compensation. (Power-supply rejection was introduced in Section 6.3.6.)
With Miller compensation, C is connected from the gate to drain of M6, and it shorts the
gate and drain at high frequencies. Assuming Vgs6 is approximately constant, high-frequency
variations on the negative supply are coupled directly to the op-amp output. Connecting C to
common-gate M11 eliminates this coupling path. Drawbacks of this approach are that extra
devices and dc current are needed to implement the scheme in Fig. 9.22a. Also, if there is a
mismatch between the I2 current sources, the difference current must flow in the input stage,
which disrupts the balance in the input stage and affects the input-offset voltage of the op amp.

When the first stage of the op amp uses a cascode transistor, the compensation capacitor
can be connected to the source of the cascode device as shown in Fig. 9.23.11 This connection
reduces the feedforward current through C, when compared to connecting C to node ©Y , if the

VDD

VBBVBB

C
Vo

I1 I3

–VSS

in– in+

Y

+

–

Figure 9.23 A two-stage CMOS op amp with a cascoded current-mirror load in the input stage, and
with the compensation capacitor C connected to the cascode node.
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Figure 9.24 (a) Small-signal equivalent circuit of a compensation stage with nulling resistor.
(b) Pole-zero diagram showing movement of the transmission zero for various values of RZ.

voltage swing at the source of the cascode device is smaller than the swing at its drain. This
approach eliminates the feedforward path, and therefore the zero, if the voltage swing at the
source of the cascode device is zero. An advantage of this approach is that it avoids the extra
devices, bias current, and mismatch problems in Fig. 9.22a.

A third way to deal with the RHP zero is to insert a resistor in series with the compensation
capacitor, as shown in Fig. 9.24a.12,13 Rather than eliminate the feedforward current, the
resistor modifies this current and allows the zero to be moved to infinity. If the zero moves to
infinity, the total forward current at the output node that is related to v1 must go to zero when
ω → ∞. When ω → ∞, capacitor C is a short circuit and therefore the feedforward current
is only due to RZ:

iff (ω → ∞) = − v1

RZ

(9.43)

When this current is added to the current from the gm source, the total current at the output
node that is related to v1 is

iv1 =
(

gm − 1

RZ

)
v1 (9.44)

when ω → ∞. If RZ = 1/gm, this term vanishes, and the zero is at infinity.
The complete transfer function can be found by carrying out an analysis similar to that

performed for Fig. 9.18, which gives

vo

is
=

gmR1R2

[
1 − sC

(
1

gm

− RZ

)]

1 + bs + cs2 + ds3 (9.45)



648 Chapter 9 � Frequency Response and Stability of Feedback Amplifiers

where

b = R2(C2 + C) + R1(C1 + C) + RZC + gmR1R2C (9.46a)

c = R1R2(C1C2 + CC1 + CC2) + RZC(R1C1 + R2C2) (9.46b)

d = R1R2RZC1C2C (9.46c)

Again assuming gmR1, gmR2 � 1 and C is large, the poles can be approximated by

p1 ≈ − 1

gmR2R1C
(9.47a)

p2 ≈ − gmC

C1C2 + C(C1 + C2)
≈ − gm

C1 + C2
(9.47b)

p3 ≈ − 1

RZC1
(9.47c)

The first two poles, p1 and p2, are the same as for the original circuit in Fig. 9.18. The third
pole is at a very high frequency with |p3| � |p2| because typically C1 	 C2 (since C1 is a
small parasitic capacitor and C2 is the load capacitor) and RZ will be about equal to 1/gm if
the zero is moved to a high frequency [from (9.44)]. This circuit has three poles because there
are three independent capacitors. In contrast, Fig. 9.18 has three capacitors that form a loop, so
only two of the capacitor voltages are independent. Thus there are only two poles associated
with that circuit.

The zero of (9.45) is

z = 1(
1

gm

− RZ

)
C

(9.48)

This zero moves to infinity when RZ equals 1/gm. Making the resistor greater than 1/gm

moves the zero into the left half-plane, which can be used to provide positive phase shift at
high frequencies and improve the phase margin of a feedback circuit that uses this op amp.13

The movement of the zero for increasing RZ is shown in Fig. 9.24b.
Figure 9.25 shows a Miller-compensated op amp using a resistor RZ in series with the

compensation capacitor. In practice, resistor RZ is usually implemented using a MOS transistor
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Figure 9.25 A two-stage CMOS op amp.
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biased in the triode region. From (1.152), a MOS transistor operating in the triode region
behaves like a linear resistor if Vds 	 2(VGS − Vt). The on-resistance RZ of the triode device
can be made to track 1/gm of common-source transistor M6 if the two transistors are identical
and have the same VGS − Vt . When this MOS transistor is placed to the left of the compensation
capacitor as shown in Fig. 9.25, its source voltage is set by Vgs6, which is approximately
constant. Therefore, VGS of the triode transistor can be set by connecting its gate to a dc bias
voltage, which can be generated using replica biasing.13 (See Problem 9.23.)

Another way to shift the zero location that can be used in multistage op amps will be
presented in Section 9.4.5.

In all the compensation approaches described so far, the dominant pole is set by com-
pensation capacitor C and is independent of the load capacitor C2. However, the second pole
is a function of C2. If the op amp will be used in different applications with a range of load
capacitors, the compensation capacitor should be selected to give an acceptable phase margin
for the largest C2. Then the phase margin will increase as the load capacitor decreases because
|p2| is inversely proportional to C2.

EXAMPLE

Compensate the two-stage CMOS op amp from the example in Section 6.3.5 (Fig. 6.16) to
achieve a phase margin of 45◦ or larger when driving a load capacitance of 5 pF, assuming the
op amp is connected in unity-gain feedback.

With the op amp in unity-gain feedback, f = 1 and the loop gain T = af = a (or, equiv-
alently, A∞ = 1 and the return ratio � = a). Therefore, the phase and gain margins can be
determined from Bode plots of |a| and ph(a).

The two-stage op amp and a simplified model for this op amp are shown in Fig. 9.25. In
the model, all capacitances that connect to node ©X are lumped into C1, and all capacitances
that connect to the output node are lumped into C2. If we apply an input voltage vi in Fig. 9.26,
a current i1 = gm1vi is generated. This i1 drives a circuit that is the same as the circuit that is
drives in Fig. 9.18. Therefore, the equations for the two poles and one zero for the circuit in
Fig. 9.18 apply here with is = gm1vi, gm = gm6, R1 = ro2||ro4, and R2 = ro6||ro7.

We will use Miller compensation with a series resistance to eliminate the zero. To achieve
a 45◦ phase margin, the compensation capacitor C should be chosen so that |p2| equals the
unity-gain frequency (assuming the zero has been eliminated and |p3| � |p2|). Since the gain
roll-off from |p1| to |p2| is −6 dB/octave, |a(jω)| · ω is constant from |p1| to |p2|. Therefore,

ao · |p1| = 1 · |p2| (9.49)

where

ao = gm1(ro2||ro4)gm6(ro6||ro7) = gm1R1gm6R2 (9.50)
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Figure 9.26 A small-signal model for the op amp in Fig. 9.25.
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is the dc gain of the op amp. Substitution of (9.47) and (9.50) into (9.49) gives

gm1R1gm6R2 · 1

gm6R2R1C
= 1 · gm6

C1 + C2

or
gm1

C
= gm6

C1 + C2
(9.51)

The capacitance C2 at the output is dominated by the 5-pF load capacitance, and the internal
parasitic capacitance C1 is much smaller than 5 pF (SPICE simulation gives C1 ≈ 120 fF).
Therefore C1 + C2 ≈ 5 pF. From the example in Section 6.3.5, we find

gm1 = k′
p(W/L)1|Vov1| = (64.7 �A/V2)(77)(0.2 V) = 1 mA/V

and

gm6 = k′
n(W/L)6(Vov6) = (194 �A/V2)(16)(0.5 V) = 1.55 mA/V

Substituting these values into (9.51) and rearranging gives

C = gm1

gm6
(C1 + C2) ≈ 1 mA/V

1.55 mA/V
(5 pF) = 3.2 pF

To eliminate the zero due to feedforward through C, a resistor RZ of value 1/gm6 = 645 � can
be connected in series with the compensation capacitor C. (In practice, this resistance should
be implemented with an NMOS transistor that is a copy of M6 biased in the triode region, so
that RZ = 1/gm6. See Problem 9.23.)

SPICE simulations (using models based on Table 2.4) of the op amp before and after
compensation give the magnitude and phase plots shown in Fig. 9.27. Before compensation,
the amplifier is unstable and has a phase margin of −6◦. After compensation with RZ = 645 �

and C = 3.2 pF the phase margin improves to 41◦ with a unity-gain frequency of 35 MHz, and
the gain margin is 15 dB. This phase margin is less than the desired 45◦. The simulated value of
gm6 is 1.32 mA/V and differs somewhat from the calculated gm6, because the formulas used to
calculate gm are based on square-law equations that are only approximately correct. Changing
RZ to 1/gm6(SPICE) = 758 � gives a phase margin of 46◦ with a unity-gain frequency of
35 MHz, and the gain margin is 22 dB. Without RZ, the phase margin is 14◦, so eliminating
the right-half-plane zero significantly improves the phase margin.

Two earlier assumptions can be checked from SPICE simulations. First, C1 ≈ 120 fF from
SPICE and C2 ≈ 5 pF; therefore, the assumption that C1 	 C2 is valid. Also, |p3| � |p2|
follows from |p3| ≈ 1/(RZC1) = gm6/C1, |p2| ≈ gm6/C2, and C1 	 C2.

9.4.4 Compensation of Single-Stage CMOS Op Amps

Single-stage op amps, such as the telescopic cascode or folded cascode, have only one gain
stage; therefore Miller compensation is not possible. These op amps have high open-loop
output resistance and are typically used in switched-capacitor circuits, where the load is purely
capacitive. Therefore, the dominant pole is associated with the output node, and the load
capacitor provides the compensation.

A simplified, fully differential, telescopic-cascode op amp is shown in Fig. 9.28a. The
simplifications here are that ideal current sources replace biasing transistors and all capacitances
have been lumped into the load capacitors CL and the parasitic capacitors Cp at the cascode
nodes. The differential-mode (DM) voltage gain can be found by analyzing the half-circuit
shown in Fig. 9.28b. Since there are two independent capacitors, the DM gain has two poles.
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Figure 9.27 Plots of the
simulated (a) magnitude and
(b) phase of the op-amp gain
before and after compensation
(C = 3.2 pF, RZ = 645 �) for
the op amp in Fig. 9.25.

An exact analysis, ignoring body effect, gives a DM gain of

vod

vid

= − gm1ro1(gm1Aro1A + 1)

1 + s(ro1ACL + ro1Cp + ro1CL + gm1Aro1Aro1CL) + s2ro1ro1ACpCL

(9.52)

If gmro � 1, (9.52) simplifies to

vod

vid

= − gm1ro1gm1Aro1A

1 + sgm1Aro1Aro1CL + s2ro1ro1ACpCL

(9.53)

The gain has two poles and no zeros. Assuming widely spaced real poles, the poles can be
approximated using (9.29) and (9.30):

p1 ≈ − 1

gm1Aro1Aro1CL

≈ − 1

RoCL

(9.54a)

p2 ≈ −gm1A

Cp

(9.54b)
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Figure 9.28 (a) Simplified CMOS
telescopic-cascode op amp. (b) The
differential-mode half-circuit.

where Ro is the output resistance of the DM half-circuit and Ro ≈ gm1Aro1Aro1. Alternatively,
these poles can be estimated using time-constant analysis as shown in Chapter 7. The dominant
pole is set by the zero-value time constant for CL, which is computed with Cp open and equals
RoCL. The nondominant pole can be approximated using the short-circuit time constant for
Cp, which is computed with CL shorted. When CL is shorted, the resistance seen by Cp is the
resistance looking into the source of M1A, which is 1/gm1A (ignoring body effect). Typically,
|p1| 	 |p2| because Ro � 1/gm1A and CL � Cp. If the phase margin is not large enough for
a given feedback application, additional capacitance can be added at the output node to increase
CL, which decreases |p1| without affecting p2 and therefore increases the phase margin.

Capacitance Cp consists of Cgs1A plus smaller capacitances such as Cdb1 and Csb1A.
Assuming Cp ≈ Cgs1A, then |p2| ≈ gm1A/Cp ≈ gm1A/Cgs1A ≈ ωT of M1A. Thus, the fre-
quency at which the magnitude of the op-amp gain equals one, which is called the unity-gain
bandwidth, can be very high with this op amp.

A simplified, fully differential, folded-cascode op amp is shown in Fig. 9.29a. As above,
the simplifications are that ideal current sources replace biasing transistors and all capacitances
have been lumped into the load capacitors CL and the parasitic capacitors C′

p at the cascode
nodes. With these simplifications, the DM voltage gain can be found by analyzing the half-
circuit shown in Fig. 9.29b. This circuit is identical to Fig. 9.28b except that the cascode device
is p-channel rather than n-channel and C′

p replaces Cp. Therefore, the gain is identical to (9.52)



9.4 Compensation 653

+VDD

vo vo

VBB

CL CL

Cp

I1 + I2 I1 + I2

2I1
I2 I2

–VSS

M2A M1A

M1 M2in+ in–

(a)

′
Cp

′

– +

(b)

CL
M1A

M1
Cp

vid

2

vod

2

′

Figure 9.29 (a) Simplified CMOS
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with Cp replaced by C′
p. Hence the dominant pole has the same form as (9.54a)

p1 ≈ − 1

gm1Aro1Aro1CL

≈ − 1

RoCL

(9.55a)

The second pole is associated with C′
p and is approximately given by

p2 ≈ −gm1A

C′
p

(9.55b)

Equations 9.55b and 9.54b look similar, but |p2| for the folded-cascode op amp will usually
be smaller than |p2| for the telescopic-cascode op amp. The reason is that, while the
transconductances of the cascode devices in the two circuits are often comparable, C′

p will
be significantly larger than Cp. One cause of the higher capacitance is that more devices are
connected to the node associated with C′

p in the folded-cascode op amp than are connected
to the node associated with Cp in the telescopic cascode. (Recall that the output of each ideal
current source in Fig. 9.29a is the drain of a transistor.) Also, W/L of the p-channel cascode
transistor M1A in Fig. 9.29b must be larger than W/L of the n-channel cascode device in Fig.
9.28b to make their transconductances comparable. The larger W/L will cause C′

p to be larger
than Cp. The smaller |p2| for the folded cascode leads to a smaller unity-gain bandwidth, if the
two op amps are compensated to give the same phase margin in a given feedback application.

The circuits in Figs. 9.28 and 9.29 are fully differential. These op amps can be converted
to single-ended op amps by replacing a pair of matched current sources with a current mirror.
In Fig. 9.28a, the two I current sources would be replaced with a p-channel current mirror. In
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Fig. 9.29a, the two I2 current sources would be replaced with a n-channel current mirror. As
shown in Section 7.3.5, a current mirror introduces a closely spaced pole-zero pair, in addition
to the poles p1 and p2 in (9.54) and (9.55).

Active cascodes can be used to increase the low-frequency gain of an op amp, as shown in
Fig. 6.30a. There are four active cascodes in Fig. 6.30a; each consists of a cascode transistor
(M1A – M4A) and an auxiliary amplifier (A1 or A2) in a feedback loop. When such an op amp
is placed in feedback, multiple feedback loops are present. There are four local feedback loops
associated with the active cascodes in the op amp and one global feedback loop that consists
of the op amp and a feedback network around the op amp. All these feedback loops must be
stable to avoid oscillation. The stability of each local feedback loop can be determined from
its loop gain or return ratio. Since the auxiliary amplifiers in these loops are op amps, each
auxiliary amplifier can be compensated using the techniques described in this chapter to ensure
stability of these local loops. Then the global feedback loop can be compensated to guarantee
its stability.

9.4.5 Nested Miller Compensation

Many feedback circuits require an op amp with a high voltage gain. While cascoding is com-
monly used to increase the gain in op amps with a total supply voltage of 5 V or more,
cascoding becomes increasingly difficult as the power-supply voltage is reduced. (See Chap-
ter 4.) To overcome this problem, simple gain stages without cascoding can be cascaded to
achieve high gain. When three or more voltage-gain stages must be cascaded to achieve the
desired gain, the op amp will have three or more poles, and frequency compensation becomes
complicated. Nested Miller compensation can be used with more than two gain stages.14,15

This compensation scheme involves repeated, nested application of Miller compensation. An
example of nested Miller compensation applied to three cascaded gain stages is shown in Fig.
9.30a. Two noninverting gain stages are followed by an inverting gain stage. Each voltage-gain
stage is assumed to have a high-output resistance and therefore is labeled as a gm block. The
sign of the dc voltage gain of each stage is given by the sign of the transconductance. Two
Miller compensation capacitors are used: Cm1, which is placed around the last gain stage, and
Cm2, which is connected across the last two gain stages. Because the dc gain of the second
stage is positive and the dc gain of the third stage is negative, both capacitors are in negative
feedback loops.

A simplified circuit schematic is shown in Fig. 9.30b. Each noninverting gain stage is
composed of a differential pair with a current-source load. The inverting gain stage consists
of a common-source amplifier with a current-source load. A simplified small-signal model is
shown in Fig. 9.30c. The main simplification here is that all capacitances associated with the
gain stages are modeled by C0, C1, and C2.

Without the compensation capacitors, this amplifier has three real poles that are not widely
spaced if the RiCi time constants are comparable. When Cm1 is added, the two poles associated
with the output nodes of the second and third stages split apart along the real axis due to the
Miller compensation, but the pole associated with output of the first stage does not change.
From a design standpoint, the goal of this pole splitting is to cause one pole to dominate the
frequency response of the second and third stages together. Assume at first that this goal is
met. Then adding Cm2 across the second and third stages is similar to adding Cm1 across the
third stage. Pole splitting occurs again, and the pole associated with the output node of the
first stage becomes dominant because the Miller-multiplied Cm2 loads this node. Meanwhile,
the pole associated with the output of the second stage moves to higher frequency because of
negative feedback through Cm2. The polarity of this feedback does not become positive at any
frequency where the gain around the loop is at least unity because the frequency response of
of the second and third stages is dominated by one pole.
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Figure 9.30 (a) Block diagram for a three-stage op amp with nested Miller compensation. (b) A
simplified schematic for such an op amp in CMOS. (c) A small-signal model.

In practice, the exact movement of the poles is complicated by the nondominant pole in the
feedback loop though Cm2. Also, zeros are introduced by feedforward through Cm1 and Cm2.
The pole and zero locations can be found from an exact analysis of the small-signal circuit.
The analysis can be carried out by summing currents at the outputs of the gm generators, then
manipulating the resulting three equations. These steps are not conceptually difficult but are
not shown here. The exact transfer function from the output of the current generator in the
input stage, is = gm0vin, to the output voltage vo is

vo

is
= −N(s)

D(s)
(9.56)

= −R0gm1R1gm2R2 − (gm1R1Cm1 + Cm2)R0R2s − R0R1R2Cm2(C1 + Cm1)s2

1 + a1s + a2s2 + a3s3
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where

a1 = K + R0(Cm2 + C0) + gm1R1gm2R2R0Cm2 (9.57a)

a2 = R1R2(C2 + Cm1 + Cm2)(C1 + Cm1) − R1R2C
2
m1 + R0(Cm2 + C0)K

−gm1R1Cm1Cm2R0R2 − R0R2C
2
m2 (9.57b)

a3 = R0R1R2[(C2Cm2 + C0C2 + C0Cm2)(C1 + Cm1) + C1Cm1Cm2

+ C0C1Cm1] (9.57c)

with

K = R2(C2 + Cm1 + Cm2) + R1(C1 + Cm1) + R1Cm1gm2R2 (9.57d)

Equation 9.56 is the transfer function from is to vo. The transfer function of the voltage
gain from vin to vo is found by multiplying (9.56) by gm0 (since is = gm0vin); therefore, the
voltage gain and (9.56) have the same poles and zeros. The transfer function in (9.56) has two
zeros and three poles. Let us first examine the poles. The expressions for the ai coefficients
are complicated and involve many terms. Therefore assumptions are needed to simplify the
equations. If gm1R1gm2R2 � 1, which is usually true, then

a1 ≈ gm1R1gm2R2R0Cm2 (9.58)

Assuming there is a dominant pole p1, then

p1 ≈ − 1

a1
= − 1

gm1R1gm2R2R0Cm2
(9.59)

Another way to arrive at this estimate of p1 is to apply the Miller effect to Cm2. The effective
Miller capacitor is about Cm2 times the negative of the gain across Cm2, which is gm1R1gm2R2.
This capacitor appears in parallel with R0, giving a time constant of (gm1R1gm2R2)R0Cm2.

The other poles p2 and p3 could be found by factoring the third-order denominator in
(9.56), which can be done using a computer but is difficult by hand. However, these poles can
be estimated from a quadratic equation under certain conditions. If there is a dominant pole
p1, then |p2|, |p3| � |p1|. At high frequencies, where |s| � |p1| ≈ 1/a1, we have |a1s| � 1,
so the denominator in (9.56) can be approximated by dropping the constant “1” to give

D(s) ≈ a1s + a2s
2 + a3s

3 = a1s

(
1 + a2

a1
s + a3

a1
s2

)
(9.60)

This equation gives three poles. One pole is at dc, which models the effect of the dominant
pole p1 for frequencies well above |p1|. Poles p2 and p3 are the other roots of (9.60). They
can be found by concentrating on the quadratic term in parenthesis in (9.60), which is

D′(s) = D(s)

a1s
≈ 1 + a2

a1
s + a3

a1
s2 ≈

(
1 − s

p2

)(
1 − s

p3

)
(9.61)



9.4 Compensation 657

Assuming that R0, R1, R2 � |1/(gm2 − gm1)| and Co is small compared to the other
capacitors, (9.57b) and (9.57c) simplify to

a2 ≈ R0R1R2(gm2 − gm1)Cm1Cm2 (9.62)

a3 ≈ R0R1R2(C1C2Cm2 + C2Cm1Cm2 + C1Cm1Cm2) (9.63)

Using (9.58), (9.62), and (9.63), the coefficients in D′(s) are

a2

a1
≈ gm2 − gm1

gm1gm2
Cm1 (9.64)

a3

a1
≈ C1C2 + Cm1C1 + C2Cm1

gm1gm2
(9.65)

To ensure that the high-frequency poles are in the left half-plane (LHP), a2/a1 must be positive
(see Appendix A9.2). Therefore, gm2 must be larger than gm1. Poles p2 and p3 can be real or
complex, and in general the quadratic formula must be used to solve for these poles. However, if
these poles are real and widely spaced and if Cm1 � C1, C2, then approximate expressions can
be found. If |p2| 	 |p3|, then −1/p2 is approximately equal to the coefficient of s in D′(s), so

p2 ≈ −a1

a2
= − gm1gm2

(gm2 − gm1)Cm1
(9.66a)

Also 1/(p2p3) is equal to the coefficient of s2 in D′(s), so

p3 ≈ a1

a3

1

p2
= − gm1gm2

C1C2 + Cm1C1 + C2Cm1
· (gm2 − gm1)Cm1

gm1gm2
(9.66b)

= − (gm2 − gm1)Cm1

C1C2 + Cm1(C1 + C2)
≈ −gm2 − gm1

C1 + C2

The final approximation here follows if Cm1 is large. Equations 9.66a and 9.66b are accurate
if |p2| 	 |p3|. Substituting (9.66a) and (9.66b) into this inequality produces an equivalent
condition

|p2| ≈ gm1gm2

(gm2 − gm1)Cm1
	 (gm2 − gm1)Cm1

C1C2 + Cm1(C1 + C2)
≈ |p3| (9.67)

If this condition is not satisfied, p2 and p3 are either complex conjugates or real but closely
spaced. Cm1 can always be chosen large enough to satisfy the inequality in (9.67). While
it is possible to make the high-frequency poles real and widely separated, higher unity-gain
bandwidth may be achievable when p2 and p3 are not real and widely separated.16

In the simplified equations 9.66a and 9.66b, poles p2 and p3 are dependent on Cm1 but
not on Cm2. In contrast, dominant pole p1 is inversely proportional to Cm2 and is independent
of Cm1. The poles can be positioned to approximate a two-pole op amp by making |p1| 	
|p2| 	 |p3| and positioning |p3| well beyond the unity-gain frequency of the op amp.

The zero locations can be found by factoring the second-order numerator N(s) in (9.56).
The coefficients of s and s2 in the numerator are negative and the constant term is positive. As
a result, the zeros are real. One is positive and the other is negative, as is shown in Appendix
A9.2.

The zeros will be found using some simplifying assumptions. First, the numerator of (9.56)
can be rewritten as

N(s) = R0gm1R1gm2R2

[
1 − s

(
Cm1

gm2
+ Cm2

gm1R1gm2

)
− s2 Cm2(C1 + Cm1)

gm1gm2

]
(9.68)
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Assuming that Cm1 � C1 and Cm1 � Cm2/(gm1R1), then

N(s) ≈ R0gm1R1gm2R2

[
1 − s

Cm1

gm2
− s2 Cm2Cm1

gm1gm2

]
(9.69)

The zeros are the roots of N(s) = 0. Using the quadratic formula and (9.69), the zeros are

z1,2 = − gm1

2Cm2
�

√(
gm1

2Cm2

)2

+ gm1gm2

Cm1Cm2
= − gm1

2Cm2

(
1 �

√
1 + 4gm2Cm2

gm1Cm1

)
(9.70)

Taking the positive square root in the right-most formula in (9.70) yields a value that is larger
than one. Adding this value to 1 gives a positive value for the term in parentheses; subtracting
this value from 1 gives a negative quantity with a smaller magnitude than the sum. Therefore,
one zero is in the LHP and has a magnitude greater than gm1/(2Cm2). The other zero is in the
RHP and has a smaller magnitude than the LHP zero. As a result, the effect of the RHP zero is
felt at a lower frequency than the LHP zero.

The magnitude of one or both zeros can be comparable to |p2|. Because the RHP zero is
at a lower frequency than the LHP zero, the RHP zero can cause significant negative phase
shift for frequencies at or below |p2|, which would degrade the phase margin of a feedback
loop. This undesired negative phase shift would not occur if the transfer function did not have
zeros. Unfortunately, the three techniques considered in Section 9.4.3 to eliminate a RHP zero
have important limitations in a low-supply application. First, the zeros could be eliminated
by adding a source-follower buffer between the op-amp output and the right-hand side of
capacitors Cm1 and Cm2 (as in Fig. 9.21), thereby eliminating the feedforward paths through
the capacitors. However, the source follower has a nonzero dc voltage between its input and
output. This voltage may limit the op-amp output swing to an unacceptably low value in a
low-power-supply application. Second, cascode stages could be used to eliminate the zeros, as
shown in Fig. 9.23. However, the requirement that all transistors in the cascode stage operate
in the active region may limit the minimum supply voltage. Finally, a series zero-canceling
resistance (as in Fig. 9.24a) implemented with a transistor may require a large gate voltage
that exceeds the power supply.

The NE5234 op amp uses nested Miller-effect compensation. Figure 9.31 repeats the
simplified ac schematic of the high-frequency gain path of the NE5234 shown in Fig. 7.36.
Here, the common-mode input voltage is assumed to be low enough that Q1 and Q2 in
Fig. 6.36 are off. Also, the dc load current is assumed to be IL = 1 mA as in the calculations
in Chapter 6. Therefore, Q75 in Fig. 6.39 conducts a nearly constant current and is omitted in
Fig. 9.31 along with the circuits that control it for simplicity. In practice, these transistors are
important under other bias conditions. Also, note that the transconductance of the output stage
depends on the bias point assumed. The key point here is that this op amp uses three nested
compensation loops: through C22, C25, and C65. The loop through C25 includes series resistor
R25 = 1.3 k� to reduce the effects of the zero introduced through C25 and increase the phase
margin.17 This structure has one more level of nesting than shown in Fig. 9.30. The extra level
is introduced through C65 in the third stage, and its purpose is explained next.

Chapter 6 pointed out that the output transistors Q74 and Q75 in Fig. 6.39 are driven by
emitter followers to increase the current gain of the output stage and reduce its load on the
second stage. Because the integrated-circuit process is optimized to build much higher quality
npn transistors than pnp transistors, βpnp < βnpn in practice. To provide adequate current gain
when Q74 controls the output as shown in Fig. 9.31, two emitter followers Q64-Q65 drive
Q74. In contrast, Fig. 6.39 shows that only one emitter follower Q68 is used to drive Q75.
Furthermore, Q64 and Q65 use opposite polarity transistors to avoid introducing a large dc
level shift that would increase the minimum required power-supply voltage.
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Figure 9.31 An ac schematic of the high-frequency gain path of the NE5234 op amp assuming that the
common-mode input voltage is low enough that Q1 and Q2 in Fig. 6.36 are off and assuming that Q75

in Fig. 6.39 conducts a constant current and can be ignored along with the elements that drive it.

Ideally, these emitter followers give unity gain and do not limit the frequency response
of the third stage. In practice, however, they introduce extra poles that contribute unwanted
phase shift at high frequency that reduces the phase margin when the op amp is connected in a
feedback loop. This problem is especially severe in driving Q74 because two emitter followers
are used instead of one and because the output transistor and one of the emitter followers are pnp
transistors, which have much lower fT than npn transistors operating at the same bias currents.
If Miller compensation were not applied through C65, the presence of the extra poles in the
output stage due to the emitter followers would introduce extra undesired phase shift near the
unity-gain frequency of the op amp and significantly reduce the phase margin. To overcome this
problem, the extra level of Miller-effect compensation through C65 is introduced. It forces one
pole to be dominant in the output stage when feedback is applied through C25. The minimum
required value of C65 must be able to cope with all possible bias currents in the output stage.
From a stability standpoint, the worst case is when the bias current and transconductance of
Q74 are maximum because the op-amp bandwidth is increased in this case, which increases
the importance of poles introduced by the emitter followers. In practice, C65 is chosen from
simulations to be 10 pF.17 The corresponding capacitor on the npn side of the output stage is
C68 in Fig. 6.39, and this capacitor is only 1 pF. In practice, C68 	 C65 because the npn side
uses only one emitter follower and because the transistors on this side are both npn transistors.
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Figure 9.32 Gain and phase versus frequency for the NE5234 op amp from SPICE.

The presence of an extra level of Miller compensation reduces the bandwidth of the output
stage to make one pole dominant. Although it allows a simple compensation scheme for the
op amp, it also limits the high-frequency performance of the op amp with compensation.

As shown in Chapter 7, the frequency response of the NE5234 is dominated by the Miller
multiplied C22. With unity-gain feedback as in Fig. 6.3c, the resulting gain and phase plots for
the NE5234 are shown in Fig. 9.32. These plots were generated using SPICE with transistor
parameters as shown in Fig. 2.32 except βF = 40 and VA = 30 V for npn transistors and
βF = 10 and VA = 20 V for pnp transistors. The bias conditions are the same as assumed in
Chapter 6. The resulting unity-gain frequency is 2.7 MHz, and the phase margin is 43 degrees.
Return ratio simulations give the same results.

Fig. 9.33a shows another technique for eliminating a RHP zero that can be used with
cascaded stages in a low-supply application.16,18 Two gain stages and one Miller compensation
capacitor are shown.Atransconductance stage, gmf , is included. It provides a feedforward path
that can be used to move the zero to infinity. The small-signal circuit is shown in Fig. 9.33b. To
allow a simple explanation of this circuit, initially assume that C1 = C2 = 0. The circuit has
one pole due to Cm and one zero due to the feedforward current through Cm. If the zero moves
to infinity, the total forward current must go to zero when ω → ∞. Also, if the zero moves to
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Figure 9.33 (a) Block diagram of a two-stage op amp with Miller compensation and a feedforward
transconductor. (b) A small-signal model.

infinity, the output voltage will go to zero as ω → ∞ due to the pole in the transfer function.
When ω → ∞, capacitor Cm becomes a short circuit, so v2 = 0 when ω → ∞. Therefore
at infinite frequency, the current gm1v1 from the gm1 source flows through Cm. Adding this
feedforward current to the current gmf v1 from the gmf generator gives the total current at the
output node that is related to v1

iff (ω → ∞) = (−gm1 + gmf )v1 (9.71)

If gmf = gm1, this current equals zero, which means the zero is at infinity.
An exact analysis of the circuit in Fig. 9.33 gives a transfer function

vo

v1
= (9.72)

−gm1R1gm2R2 − gmf R2 − sR1R2[gmf (C1 + Cm) − gm1Cm]

1 + s[gm2R1R2Cm + R2(C2 + Cm) + R1(C1 + Cm)] + s2R1R2(C1C2 + C1Cm + C2Cm)

The zero can be moved to infinity by choosing gmf so that the coefficient of s in the numerator
is zero, which occurs when

gmf = gm1
Cm

C1 + Cm

= gm1

1 + C1

Cm

(9.73)

This value of gmf depends on the ratio of an internal parasitic capacitance C1, which is not
well controlled, and compensation capacitor Cm. Using gmf = gm1 moves the zero into the
LHP to about −gm2/C1; the magnitude of this zero is usually above the unity-gain frequency
of the op amp. If the gm1 stage has a differential input, the −gmf stage can be realized using a
replica of the gm1 stage with the inputs reversed to change the sign of the transconductance.

This zero-cancellation scheme can be used repeatedly in a three-stage op amp to eliminate
the zeros, as shown in Fig. 9.34a. A small-signal model is shown in Fig. 9.34b. Analysis of
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+
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Figure 9.34 (a) Block diagram of a three-stage op amp with nested Miller compensation and two
feedforward transconductors. (b) Small-signal model.

this circuit gives a voltage gain of

vo

vin

= R2(n0 + n1s + n2s
2)

1 + b1s + b2s2 + b3s3 (9.74)

where b1-b3 are related to a1-a3 in (9.57) by

b1 = a1 + gmf1R0R2Cm2 (9.75a)

b2 = a2 + gmf1R0R1R2(C1 + Cm1)Cm2 (9.75b)

b3 = a3 (9.75c)

and the coefficients in the numerator are

n0 = −gm0gm1gm2R0R1 − gmf0 − gm0gmf1R0 (9.76a)

n1 = gm0(gm1 − gmf1)R0R1Cm1 + (gm0 − gmf0)R0Cm2

−gmf0R1(C1 + Cm1) − gmf0R0C0 − gm0gmf1R0R1C1 (9.76b)

n2 = (gm0 − gmf0)R0R1(C1 + Cm1)Cm2 − gmf0R0R1(C1 + Cm1)C0 (9.76c)

The coefficients of s and s2 in the numerator include both positive and negative terms.Therefore,
they can be set to zero, which eliminates the zeros, by properly choosing gmf0 and gmf1. As
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in (9.73) above, these values depend on parasitic capacitances C0 and C1, which are not well
controlled in practice. An alternative choice is to set gmf0 = gm0 and gmf1 = gm1. When these
values are substituted into (9.76a)–(9.76c), n0, n1, and n2 are negative. Therefore, both zeros
are in the LHP (see Appendix A9.2), and the RHP zero has been eliminated.

With gmf1 = gm1 and gmf0 = gm0, the term added to a1 in (9.75a) is small compared to
the dominant term in a1, which is gm1R1gm2R2R0Cm2, if gm2R1 � 1. Therefore b1 ≈ a1, and
the dominant pole p1 is still given by (9.59). However, b2 can be significantly different from
a2, and therefore p2 and p3 will be different from the values given by (9.66a) and (9.66b). The
new values of the high frequency poles can be found by solving the quadratic equation that
results when b1-b3 are substituted for a1-a3 in (9.60).

The selection of the nested Miller compensation capacitors is complicated because the
values of two compensation capacitors must be chosen, and they affect the pole and zero
locations. The compensation capacitors can be chosen with the aid of a computer to achieve a
particular settling-time or phase-margin goal in a feedback application. Computer optimization
can be carried out on the closed-loop transfer function based on the op-amp transfer function or
on the loop gain or return ratio, if the small-signal model parameters are known. Alternatively,
the capacitor values can be estimated using approximations and the equations presented above.
Then SPICE simulations can be run on the transistor circuit starting with the initial estimates
of the compensation capacitors and varying the capacitors by small amounts to determine the
best values. This approach is used in the following example.

EXAMPLE

Design the 3-stage op amp in Fig. 9.34 to give a low-frequency gain of 86 dB and 45◦ phase
margin for unity feedback (f = 1) when driving a 5 pF load. Compensate the op amp so that
all the poles are real and widely spaced. To simplify this example, assume that the output
resistance of each stage is 5 k� and the internal node capacitances C0 and C1 are each 0.05 pF.
Determine the compensation capacitors and the transconductances for the op amp.

The feedforward transconductances gmf0 and gmf1 will be used to move the zeros to
well beyond the unity-gain frequency. To simplify the design equations, let gmf0 = gm0 and
gmf1 = gm1, based on (9.73)–(9.76) and the assumption that C0 and C1 are small compared
to Cm1 and Cm2.

When gmf0 = gmf1 = 0, the coefficients ai of the denominator of the transfer function
are given by (9.57). With nonzero gmf0 and gmf1, however, the coefficients of s and s2 in the
denominator of the transfer function change and are given by (9.75). From (9.75c), b3 = a3.
Also, as noted in the text following (9.76), the term added to a1 in (9.75a) is small compared
to a1, so b1 ≈ a1 and p1 is given by (9.59). Hence, poles p2 and p3 are changed due to the
added term that includes gmf1 in b2 in (9.75b). Assuming C1 	 Cm1, (9.75b) reduces to

b2 ≈ a2 + gmf1R0R1R2Cm1Cm2

Substituting the approximate expression for a2 in (9.62) and using gmf1 = gm1, this equation
becomes

b2 ≈ gm2R0R1R2Cm1Cm2

Following the analysis from (9.60) to (9.67), we find

p2 ≈ −b1

b2
≈ − gm1

Cm1
(9.77a)

p3 ≈ b1

b3

1

p2
≈ −gm2

C2
(9.77b)
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To satisfy |p2| 	 |p3|, let |p3| = 10|p2|. Substituting (9.77) in this equality and rearranging
yields

Cm1 = 10
gm1

gm2
C2 (9.78)

To ensure that Cm1 is not much larger than C2 = 5 pF we need gm1/gm2 	 1 in (9.78). Here,
we chose gm1/gm2 = 0.2. Substituting this value into (9.78) gives

Cm1 = 10(0.2)(5 pF) = 10 pF

With widely spaced poles, placing |p2| at the unity-gain frequency gives a 45◦ phase
margin. Since |gain| × frequency is constant for frequencies between |p1| and |p2|, we can
write

|a0| · |p1| = 1 · |p2| (9.79)

where

|a0| = gm0R0gm1R1gm2R2 (9.80)

is the low-frequency gain. Substitution of (9.59), (9.77a), and (9.80) into (9.79) gives

gm0

Cm2
= gm1

Cm1

If the first two gain stages are made identical to reduce the circuit-design effort, gm0 = gm1,
and the last equation reduces to

Cm2 = Cm1 = 10 pF

Now the transconductances can be found from the low-frequency gain requirement and (9.80),

|a0| = gm0R0gm1R1gm2R2 = g3
m1

0.2
(5 k�)3 = 20,000 = 86 dB

since gm0 = gm1 = 0.2gm2 has been selected. Solving gives gm1 = gm0 = gmf1 = gmf0 =
3.2 mA/V and gm2 = gm1/0.2 = 16 mA/V.

SPICE simulation of this op amp gives a dc gain of 86.3 dB and a phase margin of
52 degrees with a unity-gain frequency of 40 MHz. These values are close enough to the
specifications to illustrate the usefulness of the calculations. The pole locations are |p1|/2π =
2.3 kHz, |p2|/2π = 59 MHz, and |p3|/2π = 464 MHz. The zero locations are complex with a
magnitude much larger than the unity-gain frequency, at z1,2/2π = −345 MHz � j1.58 GHz.
Running simulations with slight changes to the compensation capacitors, we find that using
Cm1 = 10.4 pF and Cm2 = 8.3 pF gives a phase margin of 47 degrees with a unity-gain
frequency of 45 MHz.

9.5 Root-Locus Techniques1,19

To this point the considerations of this chapter have been mainly concerned with calculations
of feedback amplifier stability and compensation using frequency-domain techniques. Such
techniques are widely used because they allow the design of feedback amplifier compensation
without requiring excessive design effort. The root-locus technique involves calculation of
the actual poles and zeros of the amplifier and of their movement in the s plane as the low-
frequency, loop-gain magnitude T0 is changed. This method thus gives more information about
the amplifier performance than is given by frequency-domain techniques, but also requires
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more computational effort. In practice, some problems can be solved equally well using either
method, whereas others yield more easily to one or the other. The circuit designer needs skill in
applying both methods. The root-locus technique will be first illustrated with a simple example.

9.5.1 Root Locus for a Three-Pole Transfer Function

Consider an amplifier whose transfer function has three identical poles. The transfer function
can be written as

a(s) = a0(
1 − s

p1

)3 (9.81)

where a0 is the low-frequency gain and |p1| is the pole magnitude. Consider this amplifier
placed in a negative-feedback loop as in Fig. 9.1, where the feedback network has a transfer
function f, which is a constant. If we assume that the effects of feedback loading are small, the
overall gain with feedback is

A(s) = a(s)

1 + a(s)f
(9.82)

Using (9.81) in (9.82) gives

A(s) =

a0(
1 − s

p1

)3

1 + a0f(
1 − s

p1

)3

= a0(
1 − s

p1

)3

+ T0

(9.83)

where T0 = a0f is the low-frequency loop gain.
The poles of A(s) are the roots of the equation(

1 − s

p1

)3

+ T0 = 0 (9.84)

That is (
1 − s

p1

)3

= −T0

and thus

1 − s

p1
= 3

√−T0 = − 3
√

T0 or 3
√

T0e
j60◦

or 3
√

T0e
−j60◦

Thus the three roots of (9.84) are

s1 = p1
(
1 + 3

√
T0

)
s2 = p1

(
1 − 3

√
T0e

j60◦)
(9.85)

s3 = p1

(
1 − 3

√
T0e

−j60◦)

These three roots are the poles of A(s) and (9.83) can be written as

A(s) = a0

1 + T0

1(
1 − s

s1

) (
1 − s

s2

) (
1 − s

s3

) (9.86)



666 Chapter 9 � Frequency Response and Stability of Feedback Amplifiers

s plane

j   

T0 = 0

T0 = 8

60°
   0

σ

ω

ω
p1

Figure 9.35 Root locus for a feedback
amplifier with three identical poles
in T (s).

The equations in (9.85) allow calculation of the poles of A(s) for any value of low-frequency
loop gain T0. For T0 = 0, all three poles are at p1 as expected. As T0 increases, one pole moves
out along the negative real axis while the other two leave the axis at an angle of 60◦ and move
toward the right half-plane. The locus of the roots (or the root locus) is shown in Fig. 9.35, and
each point of this root locus can be identified with the corresponding value of T0. One point
of significance on the root locus is the value of T0 at which the two complex poles cross into
the right half-plane, as this is the value of loop gain causing oscillation. From the equation for
s2 in (9.85), this is where Re(s2) = 0, from which we obtain

1 − Re( 3
√

T0e
j60◦

) = 0

That is,

3
√

T0 cos 60◦ = 1

and

T0 = 8

Thus, any amplifier with three identical poles becomes unstable for low-frequency loop gain T0
greater than 8. This is quite a restrictive condition and emphasizes the need for compensation
if larger values of T0 are required. Note that not only does the root-locus technique give the
value of T0 causing instability, it also allows calculation of the amplifier poles for values of
T0 < 8, and thus allows calculation of both sinusoidal and transient response of the amplifier.

The frequency of oscillation can be found from Fig. 9.35 by calculating the distance

ω0 = |p1| tan 60◦ = 1.732|p1| (9.87)

Thus, when the poles just enter the right half-plane, their imaginary part has a magnitude
1.732|p1| and this will be the frequency of the increasing sinusoidal response. That is, if the
complex poles are at (σ � jω0) where σ is small and positive, the transient response of the
circuit contains a term Keσt sin ω0t, which represents a growing sinusoid. (K is set by an initial
condition.)

It is useful to calculate the value ofT0 causing instability in this case by using the frequency-
domain approach and the Nyquist criterion. From (9.81) the loop gain is

T (jω) = a0f(
1 + jω

|p1|
)3 = T0(

1 + j
ω

|p1|
)3 (9.88)
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Figure 9.36 Magnitude and phase of T (jω) for a feedback amplifier with three identical poles in T (s).

The magnitude and phase of T (jω) as a function of ω are sketched in Fig. 9.36. The frequency
ω180 where the phase shift of T (jω) is −180◦ can be calculated from (9.88) as

180◦ = 3 arctan
ω180

|p1|
and this gives

ω180 = 1.732|p1| (9.89)

Comparing (9.87) with (9.89) shows that

ω180 = ω0 (9.90)

The loop-gain magnitude at ω180 can be calculated from (9.88) as

|T (jω180)| = T0∣∣∣∣1 + j
ω180

|p1|
∣∣∣∣
3 = T0

8
(9.91)

using (9.89). The Nyquist criterion for stability indicates it is necessary that |T (jω180)| < 1.
This requires that T0 < 8, the same result as obtained using root-locus techniques.

9.5.2 Rules for Root-Locus Construction

In the above simple example, it was possible to calculate exact expressions for the amplifier
poles as a function of T0, and thus to plot the root loci exactly. In most practical cases this
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is quite difficult since the solution of third- or higher order polynomial equations is required.
Consequently, rules have been developed that allow the root loci to be sketched without requir-
ing exact calculation of the pole positions, and much of the useful information is thus obtained
without extensive calculation.

In general, the basic-amplifier transfer function and the feedback function may be
expressed as a ratio of polynomials in s.

a(s) = a0
1 + a1s + a2s

2 + · · ·
1 + b1s + b2s2 + · · · (9.92)

This can be written as

a(s) = a0
Na(s)

Da(s)
(9.93)

Also assume that

f (s) = f0
1 + c1s + c2s

2 + · · ·
1 + d1s + d2s2 + · · · (9.94)

This can be written as

f (s) = f0
Nf (s)

Df (s)
(9.95)

Loading produced by the feedback network on the basic amplifier is assumed to be included
in (9.92). It is further assumed that the low-frequency loop gain a0f0 can be changed without
changing the poles and zeros of a(s) or f (s).

The overall gain when feedback is applied is

A(s) = a(s)

1 + a(s)f (s)
(9.96)

Using (9.93) and (9.95) in (9.96) gives

A(s) = a0Na(s)Df (s)

Df (s)Da(s) + T0Na(s)Nf (s)
(9.97)

where

T0 = a0f0 (9.98)

is the low-frequency loop gain.
Equation 9.97 shows that the zeros of A(s) are the zeros of a(s) and the poles of f (s). From

(9.97) it is apparent that the poles of A(s) are the roots of

Df (s)Da(s) + T0Na(s)Nf (s) = 0 (9.99)

Consider the two extreme cases.

(a) Assume that there is no feedback and that T0 = 0. Then, from (9.99), the poles of a(s)
are the poles of a(s) and f (s). However, the poles of f (s) are also zeros of A(s) and these
cancel, leaving the poles of A(s) composed of the poles of a(s) as expected. The zeros of
A(s) are the zeros of a(s) in this case.

(b) Let T0 → ∞. Then (9.99) becomes

Na(s)Nf (s) = 0 (9.100)

This equation shows that the poles of A(s) are now the zeros of a(s) and the zeros of f (s).
However, the zeros of a(s) are also zeros of A(s) and these cancel, leaving the poles of A(s)
composed of the zeros of f (s). The zeros of A(s) are the poles of f (s) in this case.
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Rule 1. The branches of the root locus start at the poles of T (s) = a(s)f (s) where T0 = 0,
and terminate on the zeros of T (s) where T0 = ∞. If T (s) has more poles than zeros, some of
the branches of the root locus will terminate at infinity.

Examples of loci terminating at infinity are shown in Figs. 9.3 and 9.35. More rules for the
construction of root loci can be derived by returning to (9.99) and dividing it by Df (s)Da(s).
Poles of A(s) are roots of

1 + T0
Na(s)

Da(s)

Nf (s)

Df (s)
= 0

That is

T0
Na(s)

Da(s)

Nf (s)

Df (s)
= −1

The complete expression including poles and zeros is

T0

(
1 − s

za1

) (
1 − s

za2

)
· · ·

(
1 − s

zf1

) (
1 − s

zf2

)
· · ·

(
1 − s

pa1

) (
1 − s

pa2

)
· · ·

(
1 − s

pf1

) (
1 − s

pf2

)
· · ·

= −1 (9.101)

where

za1, za2 · · · are zeros of a(s)

zf1, zf2 · · · are zeros of f (s)

pa1, pa2 · · · are poles of a(s)

pf1, pf2· · · are poles of f (s)

Equation 9.101 can be written as

T0
(−pa1)(−pa2) · · · (−pf1)(−pf2) · · ·
(−za1)(−za2) · · · (−zf1)(−zf2) · · ·

× (s − za1)(s − za2) · · · (s − zf1)(s − zf2) · · ·
(s − pa1)(s − pa2) · · · (s − pf1)(s − pf2) · · · = −1 (9.102)

If the poles and zeros of a(s) and f (s) are restricted to the left half-plane [this does not restrict
the poles of A(s)], then −pa1, −pa2, and so on are positive numbers and (9.102) can be written

T0
|pa1| · |pa2| · · · |pf1| · |pf2| · · ·
|za1| · |za2| · · · |zf1| · |zf2| · · · × (s − za1)(s − za2) · · · (s − zf1)(s − zf2) · · ·

(s − pa1)(s − pa2) · · · (s − pf1)(s − pf2) · · · = −1

(9.103)

Values of complex variable s satisfying (9.103) are poles of closed-loop function A(s). Equation
9.103 requires the fulfillment of two conditions simultaneously, and these conditions are used
to determine points on the root locus.

The phase condition for values of s satisfying (9.103) is

/s − za1 + /s − za2 · · · + /s − zf1 + /s − zf2 + · · ·

−(
/s − pa1 + /s − pa2 · · · + /s − pf1 + /s − pf2 · · · ) = (2n − 1)π (9.104)
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Figure 9.37 Poles and zeros of loop gain T (s) of a feedback amplifier. Vectors are drawn to the point X
to determine if this point is on the root locus.

The magnitude condition for values of s satisfying (9.103) is

T0
|pa1| · |pa2| · · · |pf1| · |pf2| · · ·
|za1| · |za2| · · · |zf1| · |zf2| · · ·

|s − za1| · |s − za2| · · · |s − zf1| · |s − zf2| · · ·
|s − pa1| · |s − pa2| · · · |s − pf1| · |s − pf2| · · · = 1

(9.105)

Consider an amplifier with poles and zeros of T (s) as shown in Fig. 9.37. In order to determine
if some arbitrary point X is on the root locus, the phase condition of (9.104) is used. Note that
the vectors of (9.104) are formed by drawing lines from the various poles and zeros of T (s) to
the point X and the angles of these vectors are then substituted in (9.104) to check the phase
condition. This is readily done for points Y and Z on the axis.

At Y

/sY − z1 = 0◦

/sY − p1 = 0◦

and so on. All angles are zero for point Y and thus the phase condition is not satisfied. This is
the case for all points to the right of p1.

At Z

/sZ − z1 = 0◦

/sZ − p1 = 180◦

/sZ − p2 = 0◦

/sZ − p3 = 0◦

/sZ − p4 = 0◦

In this case, the phase condition of (9.104) is satisfied, and points on the axis between p1 and
p2 are on the locus. By similar application of the phase condition, the locus can be shown to
exist on the real axis between p3 and z1 and to the left of p4.

In general, if T (s) has all its zeros and poles in the LHP, the locus is situated along the
real axis where there is an odd number of poles and zeros of T (s) to the right. In some cases,
however, all the zeros of T (s) are not in the LHP. For example, an op amp that uses Miller
compensation can have a RHP zero in a(s) and therefore in T (s). If a(s) has at least one RHP
zero, at least one of the −zai terms in (9.102) is negative, rather than positive as assumed in
(9.103). If the number of RHP zeros is even, an even number of −zai terms that are negative
appear in the denominator of (9.102). The product of these negative terms is positive, and
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therefore (9.103) and (9.104) remain correct. However, if the number of RHP zeros is odd,
the product of the −zai terms in (9.102) is negative. As a result, a minus sign appears on the
left-hand side of (9.103) that causes a π term to be added on the left side of (9.104). This
change to the phase condition is reflected in the following rule.

Rule 2. If T (s) has all its zeros in the LHP or if T (s) has an even number of RHP zeros,
the locus is situated along the real axis wherever there is an odd number of poles and zeros
of T (s) to the right. However, if T (s) has an odd number of RHP zeros, the locus is situ-
ated along the real axis wherever there is an even number of poles and zeros of T (s) to the right.

Consider again the situation in Fig. 9.37. Rule 1 indicates that branches of the locus must
start at p1, p2, p3, and p4. Rule 2 indicates that the locus exists between p3 and z1, and thus
the branch beginning at p3 ends at z1. Rule 2 also indicates that the locus exists to the left of
p4, and thus the branch beginning at p4 moves out to negative infinity. The branches beginning
at p1 and p2 must also terminate at infinity, which is possible only if these branches break
away from the real axis as shown in Fig. 9.38. This can be stated as follows.

Rule 3. All segments of loci that lie on the real axis between pairs of poles (or pairs of
zeros) of T (s) must, at some internal break point, branch out from the real axis.

The following rules can be derived.20

Rule 4. The locus is symmetrical with respect to the real axis (because complex roots occur
only in conjugate pairs).

s plane

σ

ωj   

p4 z1 p3 p2 p1

60°

Figure 9.38 Root-locus construction for the poles and zeros of Fig. 9.37.
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Rule 5. Branches of the locus that leave the real axis do so at right angles, as illustrated in
Fig. 9.38.

Rule 6. If branches of the locus break away from the real axis, they do so at a point where the
vector sum of reciprocals of distances to the poles of T (s) equals the vector sum of reciprocals
of distances to the zeros of T (s).

Rule 7. If T (s) has no RHP zeros or an even number of RHP zeros, branches of the locus
that terminate at infinity do so asymptotically to straight lines with angles to the real axis of
[(2n − 1)π]/(Np − Nz) for n = 0, 1, . . . , Np − Nz − 1, where Np is the number of poles and
Nz is the number of zeros. However, if T (s) has an odd number of RHP zeros, the asymptotes
intersect the real axis at angles given by (2nπ)/(Np − Nz).

Rule 8. The asymptotes of branches that terminate at infinity all intersect on the real axis at
a point given by

σa =
∑

[poles of T (s)] − ∑
[zeros of T (s)]

Np − Nz

(9.106)

A number of other rules have been developed for sketching root loci, but those described
above are adequate for most requirements in amplifier design. The rules are used to obtain a
rapid idea of the shape of the root locus in any situation, and to calculate amplifier performance
in simple cases. More detailed calculation on circuits exhibiting complicated pole-zero patterns
generally require computer calculation of the root locus.

Note that the above rules are all based on the phase condition of (9.104). Once the locus has
been sketched, it can then be calibrated with values of low-frequency loop gain T0 calculated
at any desired point using the magnitude condition of (9.105).

The procedures described above will now be illustrated with examples.

EXAMPLE

In Section 9.5.1 the root locus was calculated for an amplifier with three identical poles. This
example was chosen because it was analytically tractable. Now consider a more practical case
where the amplifier has three nonidentical poles and resistive feedback is applied. It is required
to plot the root locus for this amplifier as feedback factor f is varied (thus varying T0), and it
is assumed that variations in f do not cause significant changes in the basic-amplifier transfer
function a(s).

Assume that the basic amplifier has a transfer function

a(s) = 100(
1 − s

p1

) (
1 − s

p2

) (
1 − s

p3

) (9.107)

where

p1 = −1 × 106 rad/s

p2 = −2 × 106 rad/s

p3 = −4 × 106 rad/s

Since the feedback circuit is assumed resistive, loop gain T (s) contains three poles. The root
locus is shown in Fig. 9.39, and, for convenience, the numbers are normalized to 106 rad/s.
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Figure 9.39 Root-locus example for poles of T (s) at −1 × 106, −2 × 106, and −4 × 106 rad/s.

Rules 1 and 2 indicate that branches of the locus starting at poles p1 and p2 move toward
each other and then split out and asymptote to infinity. The branch starting at pole p3 moves
out along the negative real axis to infinity.

The breakaway point for the locus between p1 and p2 can be calculated using rule 6. If
σi is the coordinate of the breakaway point, then

1

σi + 1
+ 1

σi + 2
+ 1

σi + 4
= 0 (9.108)

Solving this quadratic equation for σi gives σi = −3.22 or −1.45. The value −1.45 is the only
possible solution because the breakaway point lies between −1 and −2 on the real axis.

The angles of the asymptotes to the real axis can be found using rule 7 and are � 60◦ and
180◦. The asymptotes meet the real axis at a point whose coordinate is σa given by (9.106),
and using (9.106) gives

σa = (−1 − 2 − 4) − 0

3
= −2.33

When these asymptotes are drawn, the locus can be sketched as in Fig. 9.39 noting, from rule 5,
that the locus leaves the real axis at right angles. The locus can now be calibrated for loop
gain by using the magnitude condition of (9.105). Aspects of interest about the locus may be
the loop gain required to cause the poles to become complex, the loop gain required for poles
with an angle of 45◦ to the negative real axis, and the loop gain required for oscillation (right
half-plane poles).
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Consider first the loop gain required to cause the poles to become complex. This is a point
on the locus on the real axis at σi = −1.45. Substituting s = −1.45 in (9.105) gives

T0
1 × 2 × 4

0.45 × 0.55 × 2.55
= 1 (9.109)

where

|p1| = 1 |p2| = 2 |p3| = 4

|s − p1| = 0.45 |s − p2| = 0.55 |s − p3| = 2.55

and

s = −1.45 at the point being considered

From (9.109), T0 = 0.08. Thus a very small loop-gain magnitude causes poles p1 and p2 to
come together and split.

The loop gain required to cause right half-plane poles can be estimated by assuming that
the locus coincides with the asymptote at that point. Thus we assume the locus crosses the
imaginary axis at the point

j2.33 tan 60◦ = 4.0j

Then the loop gain at this point can be calculated using (9.105) to give

T0
1 × 2 × 4

4.1 × 4.5 × 5.7
= 1 (9.110)

where

|s − p1| = 4.1 |s − p2| = 4.5 |s − p3| = 5.7

and

s = 4j at this point on the locus

From (9.110), T0 = 13.2. Since a0 = 100 for this amplifier [from (9.107)], the overall gain of
the feedback amplifier to T0 = 13.2 is

A0 = a0

1 + T0
= 7.04

and

f = T0

a0
= 0.132

The loop gain when the complex poles make an angle of 45◦ with the negative real axis
can be calculated by making the assumption that this point has the same real-axis coordinate
as the breakaway point. Then, using (9.105) with s = (−1.45 + 1.45j), we obtain

T0
1 × 2 × 4

1.52 × 1.55 × 2.93
= 1

and thus

T0 = 0.86

Finally, the loop gain required to move the locus out from pole p3 is of interest. When the
real-axis pole is at −5, the loop gain can be calculated using (9.105) with s = −5 to give

T0
1 × 2 × 4

1 × 3 × 4
= 1
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That is,

T0 = 1.5

When this pole is at −6, the loop gain is

T0
1 × 2 × 4

2 × 4 × 5
= 1

and thus

T0 = 5

These values are marked on the root locus of Fig. 9.39.
In this example, it is useful to compare the prediction of instability at T0 = 13.2 with the

results using the Nyquist criterion. The loop gain in the frequency domain is

T (jω) = T0(
1 + jω

106

) (
1 + jω

2 × 106

) (
1 + jω

4 × 106

) (9.111)

A series of trial substitutions shows that \ T (jω) = −180◦ for ω = 3.8 × 106 rad/s. Note that
this is close to the value of 4 × 106 rad/s where the root locus was assumed to cross the jω

axis. Substitution of ω = 3.8 × 106 in (9.111) gives, for the loop gain at that frequency,

|T (jω)| = T0

11.6
(9.112)

Thus, for stability, the Nyquist criterion requires that T0 < 11.6 and this is close to the answer
obtained from the root locus. If the point on the jω axis where the root locus crossed had
been determined more accurately, it would have been found to be at 3.8 × 106 rad/s, and both
methods would predict instability for T0 > 11.6.

It should be pointed out that the root locus for Fig. 9.39 shows the movement of the poles
of the feedback amplifier as T0 changes. The theory developed in Section 9.5.2 showed that the
zeros of the feedback amplifier are the zeros of the basic amplifier and the poles of the feedback
network. In this case there are no zeros in the feedback amplifier, but this is not always the
case. It should be kept in mind that if the basic amplifier has zeros in its transfer function, these
may be an important part of the overall transfer function.

The rules for drawing a root locus were presented for varying T0, assuming that the poles
and zeros of a(s) and f (s) do not change when T0 changes. This assumption is often not valid
in practice, since changing the circuit to change T0 = a0f usually affects at least some of the
poles and zeros. Alternatively, these rules can be used to draw a root locus of the poles of a
transfer function as the value x of an element in the circuit changes if the closed-loop gain A(s)
can be written in the form

A(s) = M(s)

G(s) + xH(s)
(9.113)

where M(s), G(s), and H(s) are polynomials in s, and G(s) and H(s) are not functions of x. The
poles of A(s) are the roots of G(s) = 0 when x = 0 and the roots of H(s) = 0 when x → ∞.
The roots of G(s) = 0 are the starting points of the root locus, and the roots of H(s) = 0 are
the ending points of the root locus. The complete locus for all values of x can be drawn by
following the rules given in this section. For example, this approach could be used to plot a
locus of the poles of the transfer function in (9.27) as the compensation capacitor C varies. (In
this case, x = C.)
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Figure 9.40 Root locus for an
op amp with two poles in its
transfer function. The feed-
back is assumed resistive.

9.5.3 Root Locus for Dominant-Pole Compensation

Consider an op amp that has been compensated by creation of a dominant pole at p1. If we
assume the second most dominant pole is at p2 and neglect the effect of higher order poles,
the root locus when resistive feedback is applied is as shown in Fig. 9.40. Using rules 1 and 2
indicates that the root locus exists on the axis between p1 and p2, and the breakaway point is
readily shown to be

σi = p1 + p2

2
(9.114)

using rule 6. Using rules 7 and 8 shows that the asymptotes are at 90◦ to the real axis and meet
the axis at σi.

As T0 is increased, the branches of the locus come together and then split out to become
complex. As T0 becomes large, the imaginary part of the poles becomes large, and the circuit
will then have a high-frequency peak in its overall gain function A(jω). This is consistent with
the previous viewpoint of gain peaking that occurred with diminishing phase margin.

Assume that maximum bandwidth in this amplifier is required, but that little or no peaking
is allowed. This means that with maximum loop gain applied, the poles should not go beyond
the points marked X and Y on the locus where an angle of 45◦ is made between the negative
real axis and a line drawn from X or Y to the origin. At X, the loop gain can be calculated using
(9.105)

T0
|p1| · |p2|

|s − p1| · |s − p2| = 1 (9.115)

If p1 is a dominant pole, we can assume that |p1| 	 |p2| and σi = p2/2. For poles at 45◦,
|s − p1| = |s − p2| � √

2|p2|/2. Thus (9.115) becomes

T0 = 1

|p1| · |p2|
(√

2
|p2|

2

)2

This gives

T0 = 1

2

|p2|
|p1| (9.116)
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for the value of T0 required to produce poles at X and Y in Fig. 9.40. The effect of narrow-
banding the amplifier is now apparent. As |p1| is made smaller, it requires a larger value of
T0 to move the poles out to 45◦. From (9.116), the dominant-pole magnitude |p1| required to
ensure adequate performance with a given T0 and |p2| can be calculated.

9.5.4 Root Locus for Feedback-Zero Compensation

The techniques of compensation described earlier in this chapter involved modification of the
basic amplifier only. This is the universal method used with op amps that must be compensated
for use with a wide variety of feedback networks chosen by the user. However, this method is
quite wasteful of bandwidth, as was apparent in the calculations.

In this section, a different method of compensation will be described that involves modifi-
cation of the feedback path and is generally limited to fixed-gain amplifiers. This method finds
application in the compensation of wideband feedback amplifiers where bandwidth is of prime
importance. An example is the shunt-series feedback amplifier of Fig. 8.31, which is known
as a current feedback pair. The method is generally useful in amplifiers of this type, where the
feedback is over two stages, and in circuits such as the series-series triple of Fig. 8.18a.

A shunt-series feedback amplifier including a feedback capacitor CF is shown in Fig. 9.41.
The basic amplifier including feedback loading for this circuit is shown in Fig. 9.42. Capacitors
CF at input and output have only a minor effect on the circuit transfer function. The feedback
circuit for this case is shown in Fig. 9.43 and feedback function f is given by

f = ii

i2
= − RE

RF + RE

1 + RFCFs

1 + RERF

RE + RF

CFs

(9.117)

Feedback function f thus contains a zero with a magnitude

ωz = 1

RFCF

(9.118)

and a pole with a magnitude

ωp = RE + RF

RE

1

RFCF

(9.119)

Quantity (RE + RF )/RE is approximately the low-frequency gain of the overall circuit with
feedback applied, and, since it is usually true that (RE + RF )/RE � 1, the pole magnitude

RF

RE

RL1

zL

Q1

Q2

is

io

CF

Figure 9.41 Shunt-series feedback amplifier including a feedback capacitor CF .
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Figure 9.42 Basic amplifier including feedback loading for the circuit of Fig. 9.41.

RF
RE

i2

i1

CF

Figure 9.43 Circuit for the calculation of
feedback function f for the amplifier
of Fig. 9.41.

given by (9.119) is usually much larger than the zero magnitude. This will be assumed and the
effects of the pole will be neglected, but if (RE + RF )/RE becomes comparable to unity, the
pole will be important and must be included.

The basic amplifier of Fig. 9.42 has two significant poles contributed by Q1 and Q2.
Although higher magnitude poles exist, these do not have a dominant influence and will be
neglected. The effects of this assumption will be investigated later. The loop gain of the cir-
cuit of Fig. 9.41 thus contains two forward-path poles and a feedback zero, giving rise to the
root locus of Fig. 9.44. For purposes of illustration, the two poles are assumed to be p1 =
−10 × 106 rad/s and p2 = −20 × 106 rad/s and the zero is z = −50 × 106 rad/s. For conve-
nience in the calculations, the numbers will be normalized to 106 rad/s.

Assume now that the loop gain of the circuit of Fig. 9.41 can be varied without changing
the parameters of the basic amplifier of Fig. 9.42. Then a root locus can be plotted as the loop
gain changes, and using rules 1 and 2 indicates that the root locus exists on the axis between
p1 and p2, and to the left of z. The root locus must thus break away from the axis between p1
and p2 at σ1 as shown, and return again at σ2. One branch then extends to the right along the
axis to end at the zero while the other branch heads toward infinity on the left. Using rule 6
gives

1

σ1 + 10
+ 1

σ1 + 20
= 1

σ1 + 50
(9.120)

Solution of (9.120) for σ1 gives

σ1 = −84.6 or − 15.4
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Figure 9.44 Root locus for the circuit of Fig. 9.41 assuming the basic amplifier contributes two poles
to T (s) and the feedback circuit contributes one zero.

Obviously σ1 = −15.4 and the other value is σ2 = −84.6. Note that these points are equidistant
from the zero, and, in fact, it can be shown that in this example the portion of the locus that is
off the real axis is a circle centered on the zero. An aspect of the root-locus diagrams that is
a useful aid in sketching the loci is apparent from Fig. 9.39 and Fig. 9.44. The locus tends to
bend toward zeros as if attracted and tends to bend away from poles as if repelled.

The effectiveness of the feedback zero in compensating the amplifier is apparent from
Fig. 9.44. If we assume that the amplifier has poles p1 and p2 and there is no feedback zero,
then when feedback is applied the amplifier poles will split out and move parallel to the jω

axis. For practical values of loop gain T0, this would result in “high Q” poles near the jω axis,
which would give rise to an excessively peaked response. In practice, oscillation can occur
because higher magnitude poles do exist and these would tend to give a locus of the kind of
Fig. 9.39, where the remote poles cause the locus to bend and enter the right half-plane. (Note
that this behavior is consistent with the alternative approach of considering a diminished phase
margin to be causing a peaked response and eventual instability.) The inclusion of the feedback
zero, however, bends the locus away from the jω axis and allows the designer to position the
poles in any desired region.

An important point that should be stressed is that the root locus of Fig. 9.44 gives the
poles of the feedback amplifier. The zero in that figure is a zero of loop gain T (s) and thus
must be included in the root locus. However, the zero is contributed by the feedback network
and is not a zero of the overall feedback amplifier. As pointed out in Section 9.5.2, the zeros of
the overall feedback amplifier are the zeros of basic amplifier a(s) and the poles of feedback
network f (s). Thus the transfer function of the overall feedback amplifier in this case has two
poles and no zeros, as shown in Fig. 9.45, and the poles are assumed placed at 45◦ to the axis
by appropriate choice of z. Since the feedback zero affects the root locus but does not appear
as a zero of the overall amplifier, it has been called a phantom zero.

On the other hand, if the zero z were contributed by the basic amplifier, the situation would
be different. For the same zero, the root locus would be identical but the transfer function of
the overall feedback amplifier would then include the zero as shown in Fig. 9.46. This zero
would then have a significant effect on the amplifier characteristics. This point is made simply
to illustrate the difference between forward path and feedback-path zeros. There is no practical
way to introduce a useful forward-path zero in this situation.

Before leaving this subject, we mention the effect of higher magnitude poles on the root
locus of Fig. 9.44, and this is illustrated in Fig. 9.47. A remote pole p3 will cause the locus to



680 Chapter 9 � Frequency Response and Stability of Feedback Amplifiers

σ

ωj   

45°

s plane

Figure 9.45 Poles of the transfer function of the
feedback amplifier of Fig. 9.41. The transfer
function contains no zeros.

σ

ωj   

45°

s plane

z
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Figure 9.47 Root locus of the circuit of Fig. 9.41 when an additional pole of the basic amplifier is
included. (Not to scale.)

deviate from the original as shown and produce poles with a larger imaginary part than expected.
The third pole, which is on the real axis, may also be significant in the final amplifier.Acceptable
performance can usually be obtained by modifying the value of z from that calculated above.

Finally, the results derived in this chapter explain the function of capacitors CP and CF in
the circuit of the MC 1553 series-series triple of Fig. 8.21a, which was described in Chapter 8.
Capacitor CP causes pole splitting to occur in stage Q2 and produces a dominant pole in the
basic amplifier, which aids in the compensation. However, as described above, a large value
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of CP will cause significant loss of bandwidth in the amplifier, and so a feedback zero is
introduced via CF , which further aids in the compensation by moving the root locus away
from the jω axis. The final design is a combination of two methods of compensation in an
attempt to find an optimum solution.

9.6 Slew Rate8

The previous sections of this chapter have been concerned with the small-signal behavior of
feedback amplifiers at high frequencies. However, the behavior of feedback circuits with large
input signals (either step inputs or sinusoidal signals) is also of interest, and the effect of fre-
quency compensation on the large-signal, high-frequency performance of feedback amplifiers
is now considered.

9.6.1 Origin of Slew-Rate Limitations

A common test of the high-frequency, large-signal performance of an amplifier is to apply a
step input voltage as shown in Fig. 9.48. This figure shows an op amp in a unity-gain feedback
configuration and will be used for purposes of illustration in this development. Assuming the
op amp is powered from a single supply between 3 V and ground, the input here is chosen to
step from 0.5 V to 2.5 V so that the circuit operates linearly well before and well after the step.
Suppose initially that the circuit has a single-pole transfer function given by

Vo

Vi

(s) = A

1 + s�
(9.121)

where

� = 1

2πfo

(9.122)

and fo is the −3-dB frequency. Since the circuit is connected as a voltage follower, the low-
frequency gain A will be close to unity. If we assume that this is so, the response of the circuit
to this step input [Vi(s) = 2/s] is given by

Vo(s) = 1

1 + s�

2

s
(9.123)

using (9.121). Equation 9.123 can be factored to the form

Vo(s) = 2

s
− 2

s + 1

�

(9.124)

From (9.124)

Vo(t) = 2(1 − e−t/�) (9.125)

(a)

Vo
Vi

+
+

+

–

–

–

Vi

t

+2.5 V

+0.5 V

(b)

Figure 9.48 (a) Circuit
and (b) input for testing
slew-rate performance.
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Figure 9.49 Response of the circuit of
Fig. 9.48 when a 2-V step input is
applied. (a) Response predicted by
(9.125) for the NE5234 op amp.
(b) Simulated response for the NE5234.

The predicted response from (9.125) is shown in Fig. 9.49a using data for the NE5234 op amp
with fo � 2.7 MHz. This shows an exponential rise of Vo(t) by 2 V and the output reaches
90 percent of its final value in about 0.14 �s.

A typical output for the NE5234 op amp in such a test is shown in Fig. 9.49b and exhibits
a completely different response. The output voltage is a slow ramp of almost constant slope
and takes about 2.6 �s to reach 90 percent of its final value. Obviously the small-signal linear
analysis is inadequate for predicting the circuit behavior under these conditions. The response
shown in Fig. 9.49b is typical of op-amp performance with a large input step voltage applied.
The rate of change of output voltage dVo/dt in the region of constant slope is called the slew
rate and is usually specified in V/�s.

The reason for the discrepancy between predicted and observed behavior noted above
can be appreciated by examining the circuit of Fig. 9.48a and considering the responses in
Fig. 9.49. At t = 0, the input voltage steps up by +2 V, but the output voltage cannot respond
instantaneously and is initially unchanged. Thus the op-amp differential input is Vid = 2 V,
which drives the input stage completely out of its linear range of operation. This can be seen by
considering a two-stage op amp; simplified schematics for a bipolar and CMOS op amp for use
in this analysis are shown in Fig. 9.50 a and b. The Miller compensation capacitor C connects
around the high-gain second stage and causes this stage to act as an integrator. The current
from the input stage, which charges the compensation capacitor, is Ix. The large-signal transfer
characteristic from the op-amp differential input voltage Vid to Ix is that of a differential pair,
which is shown in Fig. 9.50c. From Fig. 9.50c, the maximum current available to charge C
is 2I1, which is the tail current in the input stage. For a bipolar differential pair, |Ix| ≈ 2I1
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Figure 9.50 Simplified
schematics of a two-stage
(a) bipolar and (b) MOS op amp
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input stages in (a) and (b). For
the bipolar differential pair,
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differential pair,VIL ≈ √
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if |Vid | > 3VT . For a MOS differential pair, |Ix| ≈ 2I1 if |Vid | >
√

2|Vov1|. (See Chapter 3.)
Thus, when Vid = 2 V as described above, the input stage limits and Ix ≈ 2I1 (assuming that√

2|Vov1| < 2 V for the MOS circuit). The circuit thus operates nonlinearly, and linear analysis
fails to predict the behavior. If the input stage did act linearly, the input voltage change of 2 V
would produce a very large current Ix to charge the compensation capacitor. The fact that this
current is limited to the fairly small value of 2I1 is the reason for the slew rate being much less
than a linear analysis would predict.

Consider a large input voltage applied to the circuits of Fig. 9.50 so that Ix = 2I1. Then
the second stage acts as an integrator with an input current 2I1, and the output voltage Vo can
be written as

Vo = 1

C

∫
2I1dt (9.126)

and thus
dVo

dt
= 2I1

C
(9.127)

Equation 9.127 predicts a constant rate of change of Vo during the slewing period, which is in
agreement with the experimental observation.

The above calculation of slew rate was performed on the circuits of Fig. 9.50, which have
no overall feedback. Since the input stage produces a constant output current that is independent
of its input during the slewing period, the presence of a feedback connection to the input does
not affect the circuit operation during this time. Thus, the slew rate of the amplifier is the same
whether feedback is applied or not.

The NE5234 op amp does not quite fit the model shown in Fig. 9.50a because the output of
its first stage is differential. Figure 9.51 shows a model that assumes the op-amp common-mode
input voltage is low enough that Q1, Q2, and Q5-Q7 in Fig. 6.36 are off. In practice, the input
step in Fig. 9.48a changes the op-amp common-mode input voltage. Although this change
affects the biasing of the input stage in the NE5234, it has little effect on the currents that limit
the slew rate because the total current that biases the two differential pairs Q1-Q4 in Fig. 6.36

Vo
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Q10Q9

Q3 Q4
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I22

C21 =
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22 kΩ
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Figure 9.51 Simplified schematic of the NE5234 op amp.
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is constant. Therefore, the change in the op-amp common-mode input voltage is ignored here.
The three current sources at the top of Fig. 9.51 model the dc currents set by transistors Q11,
Q13, and Q14 in Fig. 6.36 and are assumed constant here. When Vid = 0, IC3 = IC4 = −3 �A,
ignoring base currents (as is done throughout this analysis for simplicity). The negative signs
here stem from the convention that defines transistor collector current as positive when it flows
into the collector. To simplify the following description, let I3 = −IC3 and I4 = −IC4. Then
with Vid = 0, I3 = I4 = 3 �A, IC9 = IC10 = 6 �A, and capacitor currents I21 = I22 = 0, as
shown in Fig. 9.51 and calculated in Chapter 6. Immediately after the step input in Fig. 9.48, Q4
turns off, I3 = 6 �A and I4 = 0. Note that the changes in I3 and I4 are differential in the sense
that one increases and the other decreases while their average value is constant. So we will
ignore the common-mode feedback circuit that controls the average voltage to ground at the
first-stage outputs and assume the voltage from node BiasCM to ground (Vbiascm) is constant.

First, we calculate IC9 immediately after the input step using the assumption that Vbiascm

is constant by setting VR9 + Vbe9 before and after the step equal to each other.

(3 �A + 6 �A)22 k� + VT ln

(
6 �A

IS9

)
= (6 �A + IC9)22 k� + VT ln

(
IC9

IS9

)
(9.128a)

Simplifying this equation gives

0 = (IC9 − 3 �A)22 k� + VT ln

(
IC9

6 �A

)
(9.128b)

Solving this equation by trial and error gives IC9 = 3.6 �A. Then from KCL at node 9,
I21 = 6 �A − IC9 = 2.4 �A. As a result, dV9/dt = 2.4 �A/5.2 pF = 0.46 V /�s, where V9 is
the voltage from node 9 to ground.

Next, we calculate IC10 immediately after the input step in a similar manner.

(3 �A + 6 �A)22 k� + VT ln

(
6 �A

IS10

)
= (IC10)22 k� + VT ln

(
IC10

IS10

)
(9.128c)

Simplifying this equation gives

0 = (IC10 − 9 �A)22 k� + VT ln

(
IC10

6 �A

)
(9.128d)

Solving this equation by trial and error gives IC9 = 8.6 �A. Then from KCL at node 10,
I22 = IC10 − 6 �A = 2.6 �A. Therefore, the voltage across C22 increases at a rate of d(Vo −
V10)/dt = 2.6 �A/5.5 pF = 0.47 V/�s, where V10 is the voltage from node 10 to ground. In
Fig. 9.51, the amplifier that represents the second and third stages in the NE5234 has negative
feedback connected around it through capacitor C22. Assuming that the gain of this amplifier
is large and that it operates linearly, Vo is driven so that V10 � V9. Therefore, the slew rate of
the NE5234 is

dVo/dt = dV9/dt + d(Vo − V10)/dt = (0.46 + 0.47) V/�s = 0.93 V/�s (9.128e)

In contrast, the plot in Fig. 9.49b shows that the simulated slew rate is about 0.68 V/�s, and
the difference stems partly from ignoring base currents in the calculations above.

9.6.2 Methods of Improving Slew-Rate in Two-Stage Op Amps

In order to examine methods of slew-rate improvement, a more general analysis is required.
This can be performed using the circuit of Fig. 9.52, which is a general representation of an op
amp circuit. The input stage has a small-signal transconductance gmI and, with a large input
voltage, can deliver a maximum current Ixm to the next stage. The compensation is shown
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gmI Vo

Ix

Ixm

C

Vi

+

–

Large
voltage

gain

Available

Figure 9.52 Generalized representation of an op amp for slew-rate calculations.

as the Miller effect using the capacitor C, since this representation describes most two-stage
integrated-circuit op amps.

From Fig. 9.52 and using (9.127), we can calculate the slew rate for a large input voltage as

dVo

dt
= Ixm

C
(9.129)

Consider now small-signal operation. For the input stage, the small-signal transconductance is

�Ix

�Vi

= gmI (9.130)

For the second stage (which acts as an integrator) the transfer function at high frequencies is

�Vo

�Ix

= 1

sC
(9.131a)

and in the frequency domain

�Vo

�Ix

(jω) = 1

jωC
(9.131b)

Combining (9.130) and (9.131b) gives

�Vo

�Vi

(jω) = gmI

jωC
(9.131c)

In our previous consideration of compensation, it was shown that the small-signal, open-loop
voltage gain (�Vo/�Vi)(jω) must fall to unity at or before a frequency equal to the magnitude
of the second most dominant pole (ω2). If we assume, for ease of calculation, that the circuit
is compensated for unity-gain operation with 45◦ phase margin as shown in Fig. 9.15, the
gain (�Vo/�Vi)(jω) as given by (9.131c) must fall to unity at frequency ω2. (Compensation
capacitor C must be chosen to ensure that this occurs.) Thus from (9.131c)

1 = gmI

ω2C

and thus
1

C
= ω2

gmI

(9.132)

Note that (9.132) was derived on the basis of a small-signal argument. This result can now be
substituted in the large-signal equation (9.129) to give

Slew rate = dVo

dt
= Ixm

gmI

ω2 (9.133)
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Equation 9.133 allows consideration of the effect of circuit parameters on slew rate, and it
is apparent that, for a given ω2, the ratio Ixm/gml must be increased if slew rate is to be increased.

9.6.3 Improving Slew-Rate in Bipolar Op Amps

The analysis of the previous section can be applied to a bipolar op amp that uses Miller
compensation. In the case of the op amp in Fig. 9.50a, we have Ixm = 2I1, gmI = qI1/kT ,
and substitution in (9.133) gives

Slew rate = 2
kT

q
ω2 (9.134)

Since both Ixm and gmI are proportional to bias current I1, the influence of I1 cancels in the
equation and slew rate is independent of I1 for a given ω2. However, increasing ω2 will increase
the slew rate, and this course is followed in most high-slew-rate circuits. The limit here is set
by the frequency characteristics of the transistors in the IC process, and further improvements
depend on circuit modifications as described below.

The above calculation has shown that varying the input-stage bias current of a two-stage
bipolar op amp does not change the circuit slew rate. However, (9.133) indicates that for a
given Ixm, slew rate can be increased by reducing the input-stage transconductance. One way
this can be achieved is by including emitter-degeneration resistors to reduce gmI as shown in
Fig. 9.53. The small-signal transconductance of this input stage can be shown to be

gmI = �Ix

�Vid

= gm1
1

1 + gm1RE

(9.135)

where

gm1 = qI1

kT
(9.136)

The value of Ixm is still 2I1. Substituting (9.135) in (9.133) gives

Slew rate = 2kT

q
ω2 (1 + gm1RE) (9.137)

+VCC

–VEE

RE

Ix

Q1

Q4

Q2

Q3

2I1

Vid
RE

+

–

Figure 9.53 Inclusion of emitter resistors in the
input stage in Fig. 9.50a to improve slew rate.
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Thus the slew rate is increased by the factor [1 + (gm1RE)] over the value given by (9.134).
The fundamental reason for this is that, for a given bias current I1, reducing gmI reduces the
compensation capacitor C required, as shown by (9.132).

The practical limit to this technique is due to the fact that the emitter resistors of Fig. 9.53
have a dc voltage across them, and mismatches in the resistor values give rise to an input dc
offset voltage. The use of large-area resistors can give resistors whose values match to within
0.2 percent (1 part in 500). If the maximum contribution to input offset voltage allowed from
the resistors is l mV, then these numbers indicate that the maximum voltage drop allowed is

I1RE|max = 500 mV (9.138)

Thus

gm1RE|max = q

kT
I1RE|max = 500

26
= 20 (9.139)

Using (9.139) in (9.137) shows that given these data, the maximum possible improvement in
slew rate by use of emitter resistors is a factor of 21 times.

Finally, in this description of methods of slew-rate improvement, we mention the Class AB
input stage described by Hearn.21 In this technique, the small-signal transconductance of the
input stage is left essentially unchanged, but the limit Ixm on the maximum current available for
charging the compensation capacitor is greatly increased. This is done by providing alternative
paths in the input stage that become operative for large inputs and deliver large charging currents
to the compensation point. This has resulted in slew rates of the order of 30 V/�s in bipolar op
amps, and, as in the previous cases, the limitation is an increase in input offset voltage.

9.6.4 Improving Slew-Rate in MOS Op Amps

A two-stage Miller-compensated MOS op amp is shown in Fig. 9.50b, and its slew rate is
given by (9.127). From the analysis in Section 9.6.2, (9.133) shows that the slew rate can be
increased by increasing ω2. On the other hand, if ω2 is fixed, increasing the ratio Ixm/gmI

improves the slew rate. Using (1.180), (9.133) can be rewritten as

Slew rate = Ixm

gmI

ω2 = 2I1√
2k′(W/L)1I1

ω2 =
√

2I1

k′(W/L)1
ω2 (9.140)

This equation shows that the slew rate increases if (W/L)1 decreases with I1 constant. In this
case, gmI = gm1 decreases. From (9.132), a smaller compensation capacitor can then be used;
therefore, the slew rate in (9.127) increases because I1 is unchanged. Equation 9.140 also
shows that the slew rate can be increased by increasing I1. Assume that I1 increases by a factor
x where x > 1. Then the ratio Ixm/gmI increases by the factor

√
x because gm1 is proportional

to
√

I1. From (9.132), the compensation capacitor must be increased by the factor
√

x if ω2 is
fixed. With these changes, the slew rate in (9.127) becomes

dVo

dt
= 2xI1

C
√

x
= 2I1

√
x

C
(9.141)

Since x > 1, the slew rate is increased.
Alternatively, the ratio Ixm/gmI of the input stage can be increased by adding degeneration

resistors RS in series with the sources of M1 and M2 to give

gmI = gm1

1 + (gm1 + gmb1)RS

(9.142)
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For fixed I1, increasing RS decreases gmI and increases Ixm/gmI , which increases the
slew rate.

These approaches increase the slew rate but have some drawbacks. First, decreasing gmI

of the input stage while keeping its bias current constant will usually lower the dc gain of the
first stage and hence reduce the dc gain of the entire op amp. Also, increasing I1 or reducing
(W/L)1 tends to increase the input-offset voltage of the op amp, as can be seen from (3.248).
Finally, if source-degeneration resistors are added, mismatch between these resistors degrades
the input-offset voltage.

For single-stage MOS op amps, such as the telescopic-cascode and folded-cascode op
amps, the slew rate is set by the maximum output current divided by the capacitance that loads
the output. The maximum output current is equal to the tail current in these op amps.

EXAMPLE

Find the output slew rate for the cascode op amp shown in Fig. 9.54.
Assuming the op amp has a large positive differential input voltage applied, M2 is cutoff

and ITAIL flows through M1. Therefore the drain current in M2A is zero, and the drain current
in M3 is Id3 = −ITAIL. The current mirror M3-M4 forces Id3 = Id4. It follows that Id4A =
Id4 = −ITAIL. The current flowing into the load capacitor CL is

Io = −Id2A − Id4A = −0 − (−ITAIL) = ITAIL

Therefore the positive output slew rate is

dVo

dt
= Io

CL

= ITAIL

CL

(9.143)

Application of a large negative input forces M1 into cutoff so ITAIL must flow through M2.
Therefore, Id4A = Id4 = Id3 = 0 and Id2A = Id2 = ITAIL. The current Io flowing through
CL is

Io = −Id2A − Id4A = −ITAIL − 0 = −ITAIL

Hence, the negative slew rate is the opposite of the value in (9.143), −ITAIL/CL.

VB1

M4M3

M2M1

M4A

M2A

Id4A

Id2A

ITAIL

M3A

M1A

CL
VB2

–VSS

VDD

Io

in–in+

Vo

+

–

Figure 9.54 A CMOS
telescopic-cascode op amp.
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CL Vo

+

–

+

–

Figure 9.55 An op amp with capacitive
load and feedback. This is the switched-
capacitor integrator of Fig. 6.10a during φ2,
assuming ideal MOS switches.

CMOS op amps are often used without an output stage when the output loading is purely
capacitive, as is the case in switched-capacitor circuits. Avoiding an output stage saves power
and is possible because low-output resistance is not needed to drive a capacitive load. An
example of such a circuit is the switched-capacitor integrator shown in Fig. 6.10a. This circuit
is redrawn in Fig. 9.55 when clock phase φ2 is high and φ1 is low, assuming that MOS
transistors M1-M4 behave like ideal switches. The additional capacitor Cip here models the
total parasitic capacitance at the op-amp input and includes the input capacitance of the op
amp. A question that arises is: “For the feedback circuit in Fig. 9.55, what value of output load
capacitance should be used to compute the slew rate for a single-stage op amp?” When the
op amp is slewing, its behavior is nonlinear. Therefore the feedback is not effective and the
virtual ground at the negative op-amp input is lost. With the feedback loop broken, the total
capacitance seen from the output to ground is

CL + CI ||(CS + Cip) (9.144)

This is the capacitance seen looking from the op-amp output node to ground, with the con-
nection to the op-amp inverting input replaced with an open circuit. The effective output load
capacitance in (9.144) is the same as the output load found when the feedback loop is broken
to find the return ratio.

For the CMOS op amps considered so far in this section, the slew rate is proportional to a
bias current in the op amp.ACMOS op amp with a ClassAB input stage can give a slew rate that
is not limited by a dc bias current in the op amp.An example22,23 is shown in Fig. 9.56. The input
voltage is applied between the gates of M1, M2 and M3, M4. Transistors M1 and M4 act simply
as unity-gain source followers to transfer the input voltage to the gates of M6 and M7. Diode-
connected transistors M5 and M8 act as level shifts, which, together with bias current sources I1,
set the quiescent ClassAB current in M2, M3, M6, and M7. The currents in M3 and M7 are deliv-
ered to the output via cascode current mirrors M9, M10, M13, M14 and M11, M12, M15, M16.
Bias currents can be determined by assuming that the input voltage Vi = 0, giving

VGS1 + |VGS5| = |VGS6| + VGS3 (9.145)

Assuming that (1.157) is valid we have

Vtn +
√

2
I1

k′
n

(
L

W

)
1
+ |Vtp| +

√
2

I1

k′
p

(
L

W

)
5

= |Vtp| +
√

2
IB

k′
P

(
L

W

)
6
+ Vtn +

√
2
IB

k′
n

(
L

W

)
3

(9.146)

where IB = |ID6| = ID3 = ID2 = |ID7| is the bias current and subscripts n and p indicate
NMOS and PMOS, respectively. The two sides of the input stage are assumed symmetrical.
From (9.146) we have

√
IB

[√
2

k′
p

(
L

W

)
6
+

√
2

k′
n

(
L

W

)
3

]
= √

I1

[√
2

k′
p

(
L

W

)
5
+

√
2

k′
n

(
L

W

)
1

]
(9.147)

Equation 9.147 is the design equation for the input-stage bias current IB.
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Figure 9.56 CMOS amplifier with a Class AB input stage.

Assuming that the cascode current mirrors in Fig. 9.56 have unity current gain, the bias
currents in M9-M16 all equal IB. To analyze this circuit, we will connect a voltage Vi to the
noninverting op-amp input and ground the inverting op-amp input. If a positive Vi is applied,
the magnitude of the currents in M3 and M6 increase, while the magnitude of the currents in
M2 and M7 decrease. When mirrored to the output, these changes drive Io and Vo positive. To
calculate the small-signal gain, we neglect body effect. We can consider M6 to act as source
degeneration for M3. The resistance looking into the source of M6 is 1/gm6, thus

id3 = gm3

1 + gm3

gm6

vi (9.148)

Similarly, M2 acts as source degeneration for M7, so

id7 = gm7

1 + gm7

gm2

vi = gm2

1 + gm2

gm7

vi (9.149)

where the right-most expression is found by rearranging. Thus, the transconductance of the
amplifier is

Gm = io

vi

∣∣∣∣
vo = 0

= id3 + id7

vi

= 2gm3

1 + gm3

gm6

(9.150)

using gm2 = gm3 and gm6 = gm7. If gm3 = gm6, then Gm = gm3.
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The output resistance of this op amp is just the output resistance of the cascodes in parallel
and is

Ro ≈ (ro14gm14ro13)||(ro15gm15ro16) (9.151)

Finally, the small-signal voltage gain is

Av = GmRo (9.152)

The small-signal analysis above showed that a small positive Vi causes a positive Io. If
Vi continues to increase beyond the small-signal linear range of the input stage, M2 and M7
will be cut off, while M3 and M6 will be driven to larger values of |Vgs|. The currents in M3
and M6 can increase to quite large values, which gives a correspondingly large positive Io. For
large negative values of Vi, M3 and M6 turn off, M2 and M7 conduct large currents, and Io

becomes large negative. Thus this circuit is capable of supplying large positive and negative
currents to a load capacitance, and the magnitude of these output currents can be much larger
than the bias current IB in the input stage. Therefore, this op amp does not display slew-rate
limiting in the usual sense.

One disadvantage of this structure is that about half the transistors turn completely off
during slewing. As a result, the time required to turn these transistors back on can be an
important limitation to the high-frequency performance. To overcome this problem, the op
amp can be designed so that the minimum drain currents are set to a nonzero value.24

9.6.5 Effect of Slew-Rate Limitations on Large-Signal Sinusoidal Performance

The slew-rate limitations described above can also affect the performance of the circuit when
handling large sinusoidal signals at higher frequencies. Consider the circuit of Fig. 9.48 with
a large sinusoidal signal applied as shown in Fig. 9.57a. Since the circuit is connected as a
voltage follower, the output voltage Vo will be forced to follow the Vi waveform. The maximum
value of dVi/dt occurs as the waveform crosses the axis, and if Vi is given by

Vi = V̂ i sin ωt (9.153)

then

dVi

dt
= ωV̂ i cos ωt

and

dVi

dt

∣∣∣∣
max

= ωV̂ i (9.154)

As long as the value of dVi/dt|max given by (9.154) is less than the slew-rate limit, the output
voltage will closely follow the input. However, if the product ωV̂ i is greater than the slew-rate
limit, the output voltage will be unable to follow the input, and waveform distortion of the kind
shown in Fig. 9.57b will result. If a sine wave with V̂ i equal to the supply voltage is applied to
the amplifier, slew limiting will eventually occur as the sine-wave frequency is increased. The
frequency at which this occurs is called the full-power bandwidth of the circuit. (In practice,
a value of V̂ i slightly less than the supply voltage is used to avoid clipping distortion of the
type described in Chapter 5.)
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(a)

(b)
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dVi
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Vi
ˆ

Vo

t

Actual waveform

Sine
wave

Figure 9.57 (a) Large sinusoidal input voltage
applied to the circuit of Fig. 9.48. (b) Output
voltage resulting from input (a) showing slew
limiting.

EXAMPLE

Calculate the full-power bandwidth of the NE5234. Use V̂ i = 1 V. From (9.154) put

ωV̂ i = slew rate

Using the slew rate of 0.68 V/�s found in simulation gives

ω = 0.68 V/�s

1 V
= 680 × 103 rad/s

Thus

f = 110 kHz

This means that a NE5234 op amp with a sinusoidal output of 1 V amplitude will begin to
show slew-limiting distortion if the frequency exceeds 110 kHz.

APPENDIX

A.9.1 ANALYSIS IN TERMS OF RETURN-RATIO PARAMETERS

Much of the analysis in this chapter is based on the ideal block diagram in Fig. 9.1. This block
diagram includes the forward gain a and feedback f, which are the parameters used in two-port
analysis of feedback circuits in Chapter 8. The resulting closed-loop gain expression is

A = a

1 + T
= a

1 + af
(9.155)
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The block diagram from return-ratio analysis in Fig. 8.42 is the same as Fig. 9.1 if a
is replaced by b, f is replaced by 1/A∞, and the direct feedforward d is negligible. (The
contribution of feedforward through the feedback network to a is also neglected in the analysis
in Sections 9.2–9.5, since feedforward introduces one or more zeros into a(s), but only one-
and two-pole a(s) are considered in these sections. Neglecting the feedforward in a or the direct
feedthrough d is reasonable if its effect is negligible at and below the frequency where the
magnitude of the loop transmission falls to 1.) The corresponding equations from return-ratio
analysis are

A = b

1 + �
+ d

1 + �
≈ b

1 + �
= b

1 + b

A∞

(9.156)

For the circuit in Fig. 8.24, 0 ≤ 1/A∞ ≤ 1, and b is positive at low frequencies. Therefore,
the equations, graphs, and relationships in Sections 9.2–9.5 can be expressed in terms of the
return-ratio variables by making the following substitutions:

a → b (9.157a)

f → 1/A∞ (9.157b)

T → � (9.157c)

af→ b/A∞ (9.157d)

The return ratio can be used to check stability of an amplifier with a single feedback loop
because A∞ and d are stable transfer functions associated with passive networks, and �(s) is
stable because it is the signal transfer around a loop that consists of one gain stage or a cascade
of stable gain stages. Therefore the zeros of 1 + �(s), which are poles of the closed-loop gain
A, determine the stability of the feedback circuit.25 From the Nyquist stability criterion, these
zeros are in the left half-plane if a polar plot of �(jω) does not encircle the point (−1,0). In
most cases, this stability condition is equivalent to having a positive phase margin. The phase
margin is measured at the frequency where |�(jω)| = 1.

Since the equations for two-port and return-ratio analyses are not identical, T (s) and �(s)
may be different for a given circuit.26 In general, the phase margins using T and � may differ,
but both will have the same sign and therefore will agree on the stability of the feedback circuit.

A.9.2 ROOTS OF A QUADRATIC EQUATION

A second-order polynomial often appears in the denominator or numerator of a transfer func-
tion, and the zeros of this polynomial are the poles or zeros of the transfer function. In this
appendix, the relationships between the zeros of a quadratic and its coefficients are explored
for a few specific cases of interest. Also, the conditions under which a dominant root exists are
derived.

Consider the roots of the quadratic equation

as2 + bs + c = 0 (9.158)

The two roots of this equation, r1 and r2, are given by the quadratic formula:

r1,2 = −b �
√

b2 − 4ac

2a
(9.159)
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where it is understood that the square root of a positive quantity is positive. Factoring b out of
the square root and rearranging gives

r1,2 = − b

2a

(
1 �

√
1 − 4ac

b2

)
(9.160a)

= − b

2a

(
1 �

√
D

)
(9.160b)

The quantity under the square root in (9.160a) has been replaced by D in (9.160b), where

D = 1 − 4ac

b2 (9.161)

Now, consider the locations of the roots if coefficients a, b, and c all have the same sign.
In this case, both roots are in the left half-plane (LHP), as will be shown next. First, note that
if all the coefficients have the same sign, then

b

2a
> 0 (9.162)

and
4ac

b2 > 0. (9.163)

Let us divide (9.163) into two different regions. First, if

0 <
4ac

b2 ≤ 1 (9.164)

then D will be positive and less than one. Therefore,
√

D < 1, so 1 + √
D and 1 − √

D are
both positive. As a result, the roots are both negative and real, because −b/2a < 0.

Now, consider the other region for (9.163), which is

4ac

b2 > 1 (9.165)

In this case, D < 0; therefore
√

D is imaginary. The roots are complex conjugates with a
real part of −b/2a, which is negative. So the roots are again in the LHP. Therefore, when
coefficients a, b, and c all have the same sign, both roots are in the LHP.

Next, consider the locations of the roots if coefficients a and b have the same sign and c
has a different sign. In this case, one real root is in the right half-plane (RHP) and the other is in
the LHP. To prove this, first note from (9.161) that D > 1 here because 4ac/b2 < 0. Therefore
both roots are real and

√
D > 1, so

1 +
√

D > 0 (9.166a)

and

1 −
√

D < 0 (9.166b)

Substituting into (9.160), one root will be positive and the other negative (the sign of −b/2a

is negative here).
Finally, let us consider the conditions under which LHP roots are real and widely spaced.

From (9.160), real LHP roots are widely spaced if

− b

2a
(1 +

√
D) 	 − b

2a
(1 −

√
D) (9.167)

or

1 +
√

D � 1 −
√

D (9.168)
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Substituting the expression for D in (9.161) into (9.168) and simplifying leads to an equivalent
condition for widely spaced roots, which is

4ac

b2 	 1 (9.169)

Under this condition, one root is

r2 = − b

2a
(1 +

√
D) ≈ − b

2a
(1 + 1) = −b

a
(9.170a)

The other root is

r1 = − b

2a
(1 −

√
D)

= − b

2a

(
1 −

√
1 − 4ac

b2

)
(9.170b)

≈ − b

2a

(
1 −

(
1 − 4ac

2b2

))

= − c

b

where the approximation
√

1 − x ≈ 1 − x

2
for |x| 	 1 (9.171)

has been used. Here, |r1| 	 |r2| because |r1| ≈ c/b 	 b/a ≈ |r2| (which follows from
4ac/b2 	 1). If these roots are poles, r1 corresponds to the dominant pole, and r2 gives the
nondominant pole. Equations 9.170a and 9.170b are in agreement with (9.30) through (9.33).

Table 9.1 summarizes the location of the roots of (9.158) for the cases considered in this
appendix. When both roots are in the LHP, the roots are both real if (9.164) is satisfied. These
roots are widely spaced if (9.169) is satisfied.

Table 9.1

Sign of Coefficient Values in (9.158)
a b c Roots

+ + + Both in LHP
− − − Both in LHP
+ + − One in LHP, one in RHP
− − + One in LHP, one in RHP

PROBLEMS
9.1 An amplifier has a low-frequency forward

gain of 200 and its transfer function has three neg-
ative real poles with magnitudes 1 MHz, 2 MHz,
and 4 MHz. Calculate and sketch the Nyquist dia-
gram for this amplifier if it is placed in a negative
feedback loop with f = 0.05. Is the amplifier stable?
Explain.

9.2 For the amplifier in Problem 9.1, calculate
and sketch plots of gain (in decibels) and phase versus

frequency (log scale) with no feedback applied. Deter-
mine the value of f that just causes instability and the
value of f giving a 60◦ phase margin.

9.3 If an amplifier has a phase margin of 30◦, how
much does the closed-loop gain peak (above the low-
frequency value) at the frequency where the loop-gain
magnitude is unity?

9.4 An amplifier has a low-frequency forward gain
of 40,000 and its transfer function has three negative
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real poles with magnitudes 2 kHz, 200 kHz, and
4 MHz.

(a) If this amplifier is connected in a feedback
loop with f constant and with low-frequency gain
A0 = 400, estimate the phase margin.

(b) Repeat (a) if A0 is 200 and then 100.

9.5 An amplifier has a low-frequency forward gain
of 5000 and its transfer function has three negative
real poles with magnitudes 300 kHz, 2 MHz, and
25 MHz.

(a) Calculate the dominant-pole magnitude re-
quired to give unity-gain compensation of this ampli-
fier with a 45◦ phase margin if the original amplifier
poles remain fixed. What is the resulting bandwidth of
the circuit with the feedback applied?

(b) Repeat (a) for compensation in a feedback loop
with a closed-loop gain of 20 dB and 45◦ phase margin.

9.6 The amplifier of Problem 9.5 is to be compen-
sated by reducing the magnitude of the most dominant
pole.

(a) Calculate the dominant-pole magnitude re-
quired for unity-gain compensation with 45◦ phase
margin, and the corresponding bandwidth of the circuit
with the feedback applied. Assume that the remaining
poles do not move.

(b) Repeat (a) for compensation in a feedback loop
with a closed-loop gain of 40 dB and 45◦ phase margin.

9.7 Repeat Problem 9.6 for the amplifier of Prob-
lem 9.4.

9.8 An op amp has a low-frequency open-loop
voltage gain of 100,000 and a frequency response with
a single negative-real pole with magnitude 5 Hz. This
amplifier is to be connected in a series-shunt feedback
loop with f = 0.01 giving a low-frequency closed-
loop voltage gain A0 ≈ 100. If the output impedance
without feedback is resistive with a value of 100 �,
show that the output impedance of the feedback circuit
can be represented as shown in Fig. 9.58, and calculate
the values of these elements. Sketch the magnitude of
the output impedance of the feedback circuit on log
scales from 1 Hz to 100 kHz.

L

R1

R2

zo

Figure 9.58 Circuit representation of the output
impedance of a series-shunt feedback circuit.

9.9 An op amp with low-frequency gain of 108
dB has three negative real poles with magnitudes
30 kHz, 500 kHz, and 10 MHz before compensation.
The circuit is compensated by placing a capaci-
tance across the second stage, causing the second
most dominant pole to become negligible because
of pole splitting. Assume the small-signal transcon-
ductance of the second stage is 6.39 mA/V and the
small-signal resistances to ground from the input
and output are 1.95 M� and 86.3 k�, respec-
tively. Calculate the value of capacitance required
to achieve a 60◦ phase margin in a unity-gain feed-
back connection and calculate the frequency where
the resulting open-loop gain is 0 dB. Assume that the
pole with magnitude 10 MHz is unaffected by the
compensation.

9.10 Repeat Problem 9.9 if the circuit is compen-
sated by using shunt capacitance to ground at the input
of the second stage. Assume that this affects only the
most dominant pole.

9.11 Calculate and sketch the root locus for the
amplifier of Problem 9.4 as f varies from 0 to 1. Esti-
mate the value of f causing instability and check using
the Nyquist criterion.

9.12 An amplifier has gain a0 = 200 and its
transfer function has three negative real poles with
magnitudes 1 MHz, 3 MHz, and 4 MHz. Calculate
and sketch the root locus when feedback is applied as
f varies from 0 to 1. Estimate the value of f causing
instability.

9.13 For the circuit of Fig. 9.41, parameter values
are RF = 5 k�, RE = 50 �, and CF = 1.5 pF. The
basic amplifier of the circuit is shown in Fig. 9.42
and has two negative real poles with magnitudes
3 MHz and 6 MHz. The low-frequency current gain
of the basic amplifier is 4000. Assuming that the loop
gain of the circuit of Fig. 9.41 can be varied without
changing the parameters of the basic amplifier, sketch
root loci for this circuit as f varies from 0 to 0.01 both
with and without CF . Estimate the pole positions of the
current-gain transfer function of the feedback ampli-
fier of Fig. 9.41 with the values of RF and RE specified
both with and without CF . Sketch graphs in each case
of gain magnitude versus frequency on log scales from
f = 10 kHz to f = 100 MHz.

9.14 An op amp has two negative real open-loop
poles with magnitudes 100 Hz and 120 kHz and a
negative real zero with magnitude 100 kHz. The low-
frequency open-loop voltage gain of the op amp is
100 dB. If this amplifier is placed in a negative feed-
back loop, sketch the root locus as f varies from 0 to 1.
Calculate the poles and zeros of the feedback amplifier
for f = 10−3 and f = 1.
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Q1

Q3

Q5

Q6

Q4

Q2

IEE

Vi

+

+15 V

10 pF

–15 V

–

Vo

+

–

300 µA

50 kΩ

20 µA

Figure 9.59 Input stages of an op amp.

9.15 Repeat Problem 9.14 if the circuit has nega-
tive real poles with magnitudes 100 Hz and 100 kHz
and a negative real zero with magnitude 120 kHz.

9.16 The input stages of an op amp are shown in
the schematic of Fig. 9.59.

(a) Assuming that the frequency response is dom-
inated by a single pole, calculate the frequency
where the magnitude of the small-signal voltage gain
|vo(jω)/vi(jω)| is unity and also the output slew rate
of the amplifier.

(b) Sketch the response Vo(t) from 0 to 20 �s for
a step input at Vi from −5 V to +5 V. Assume that
the circuit is connected in a noninverting unity-gain
feedback loop.

(c) Compare your results with a SPICE simu-
lation using parameters β = 100, VA = 130 V, and
IS = 10−15 A for all devices.

9.17 Repeat Problem 9.16 if the circuit of Fig. 9.59
is compensated by a capacitor of 0.05 �F connected
from the base of Q5 to ground.Assume that the voltage
gain from the base of Q5 to Vo is −500.

9.18 The slew rate of the circuit of Fig. 9.59 is
to be increased by using 10 k� resistors in the emit-
ters Q1 and Q2. If the same unity-gain frequency is to
be achieved, calculate the new value of compensation
capacitor required and the improvement in slew rate.
Check your result with SPICE simulations.

9.19 Repeat Problem 9.18 if PMOS transistors
replace Q1 and Q2 (with no degeneration resistors).
Assume that the PMOS transistors are biased to
300 �A each (IEE = 600 �A), at which bias value
the MOS transistors have gm = 400 �A/V.

9.20(a) Calculate the full-power bandwidth of the
circuit of Fig. 9.59.

(b) If this circuit is connected in a noninverting
unity-gain feedback loop, sketch the output waveform
Vo if Vi is a sinusoid of 10 V amplitude and frequency
45 kHz.

9.21 For the CMOS operational amplifier shown in
Fig. 9.60, calculate the open-loop voltage gain, unity-
gain bandwidth, and slew rate. Assume the parameters
of Table 2.1 with Xd = 1 �m. Assume that the gate of
M9 is connected to the positive power supply and that
the W/L of M9 has been chosen to cancel the right
half-plane zero. Compare your results with a SPICE
simulation.

9.22 Repeat Problem 9.21 except use the aspect
ratios, supply voltages, and bias current given in
Fig. 6.58 instead of the values in Fig. 9.60. Also,
assume that Xd = 0.1 �m for all transistors operat-
ing in the active region, and use Table 2.4 for other
parameters.

9.23 If the circuit of Fig. 9.61 is used to generate
the voltage to be applied to the gate of M9 in Fig. 9.60,
calculate the W/L of M9 required to move the right
half-plane zero to infinity. Use data from Table 2.1
with Xd = 1 �m. Check your result with SPICE.

9.24 Repeat Problem 9.23, but skip the SPICE
simulation. Here, M9 will be used in the op amp in Fig.
6.58. Let VDD = VSS = 1.5 V and IS = 200 �A. Use
L = 1 �m for all transistors, W8 = W10 = 150 �m,
and W11 = W12 = 100 �m.Assume that Xd = 0.1 �m
for all transistors operating in the active region, and use
Table 2.4 for other parameters.
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Figure 9.60 Circuit for
Problem 9.21.
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Figure 9.61 Circuit for Problem 9.23.

9.25 Assuming that the zero has been moved to
infinity, determine the maximum load capacitance that
can be attached directly to the output of the circuit of
Fig. 9.60 and still maintain a phase margin of 45◦.
Neglect all higher order poles except any due to the
load capacitance. Use the value of W/L obtained in
Problem 9.23 for M9 with the bias circuit of Fig. 9.61.

9.26 Repeat Problem 9.25 except, for the op amp,
use the aspect ratios, supply voltages, and bias current
given in Fig. 6.58 instead of the values in Fig. 9.60.
Also, for the bias circuit, use the aspect ratios, sup-
ply voltages, and bias current given in Problem 9.24.
Ignore junction capacitance for all transistors. Also,

assume that Xd = 0.1 �m for all transistors operat-
ing in the active region, and use Table 2.4 for other
parameters.

9.27 For the CMOS op amp of Fig. 9.60, assume
that M9 and the compensation capacitor are removed
and the output is loaded with a 1 M� resistor. Using
the data of Table 2.1, use SPICE to determine the gain
and phase versus frequency of the small-signal circuit
voltage gain.

The amplifier is to be connected in a negative
feedback loop with the 1-M� resistor connected from
the output to the gate of M1, and a resistor Rx from the
M1 gate to ground. An input voltage is applied from
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the gate of M2 to ground. From your previous simu-
lated data, determine the forward voltage gain of the
feedback configuration and the corresponding values
of Rx giving phase margins of 80◦, 60◦, 45◦, and 20◦.
For each case use SPICE to plot out the corresponding
overall small-signal voltage gain versus frequency for
the feedback circuit and also the step response for an
output voltage step of 100 mV. Compare and comment
on the results obtained. Assume Xd = 1 �m and that
the drain and source regions are 2 �m wide.

9.28 Using the basic topology of Fig. 8.53, design
a CMOS feedback amplifier with Ri = ∞, Ro <

30 �, Av = vo/vi = 10, and small-signal bandwidth
f−3dB > 2 MHz. No peaking is allowed in the gain-
versus-frequency response. Supply current must be
less than 2 mA from each of � 5 V supplies. The
circuit operates with RL = 1 k� to ground and must
be able to swing Vo =� 1 V before clipping occurs.
Use the process data of Table 2.1 with Xd = 0.5 �m
and γn = 0.5 V1/2. Source and drain regions are
9 �m wide. Verify your hand calculations with SPICE
simulations.

9.29 The CMOS circuit of Fig. 9.56 is to be used
as a high-slew-rate op amp. A load capacitance of
CL = 10 pF is connected from Vo to ground. Supply
voltages are � 5 V and I1 = 20 �A. Devices M1–M4

have W = 20 �m and L = 1 �m and devices M5–M8

have W = 60 �m and L = 1 �m. All other NMOS
devices have W = 60 �m and L = 1 �m, and all other
PMOS devices have W = 300 �m and L = 1 �m.
Device data are µnCox = 60 �A/V2, Vtn = 0.7 V,
Vtp = −0.7 V, γ = 0, and |λ| = 0.05 V−1.

(a) Calculate the small-signal open-loop gain and
unity-gain bandwidth of the circuit. Derive an expres-
sion for the large-signal transfer function Io/Vi when
all four devices M2, M3, M6, and M7 are on, and also
for larger Vi when two of them cut off. At what value
of Vi does the transition occur?

(b) Connect the circuit in a unity-gain negative
feedback loop (Vo to the gate of M1) and drive the
circuit with a voltage step from −1.5 V to + 1.5 V at
the gate of M4. Calculate and sketch the correspond-
ing output waveform Vo assuming linear operation,
and compare all your results with a SPICE simulation.
What is the peak current delivered to CL during the
transient?

9.30 Determine the compensation capacitor for the
two-stage op amp in the example in Section 9.4.3 that
gives a 60◦ phase margin.

9.31 The Miller-compensated two-stage op amp
in Fig. 9.25 can be modeled as shown in Fig. 9.26. In
the model, let gm1 = 0.5 mA/V, R1 = 200 k�, gm6 =
2 mA/V, R2 = 100 k�, C1 = 0.1 pF, and C2 = 8 pF.

(a) Assume the op amp is connected in negative
feedback with f = 0.5. What is the value of C that
gives a 45◦ phase margin? Assume the right half-plane
(RHP) zero has been eliminated, and assume the feed-
back network does not load the op amp.

(b) What value of Rz in Fig. 9.26 eliminates the
RHP zero?

9.32 Repeat Problem 9.31(a) for the common-gate
compensation scheme in Fig. 9.22a.

9.33 The simple model for the common-gate M11

in Fig. 9.22b has zero input impedance. Show that if
the common-gate stage M11 is modeled with nonzero
input impedance, the compensation scheme in Fig.
9.22a introduces a zero at −gm11/C in the amplifier
gain. To simplify this analysis, assume that ro11 = ∞,
γ = 0, and ignore all device capacitances.

9.34 Plot a locus of the poles of (9.27) as C varies
from 0 to ∞. Use R1 = 200 k�, gm = 2 mA/V,
R2 = 100 k�, C1 = 0.1 pF, and C2 = 8 pF.

9.35 For the three-stage op amp with nested Miller
compensation in Fig. 9.30c, determine the values of
the compensation capacitors that give a 60◦ phase
margin when the op amp is in a unity-gain negative
feedback loop (f = 1). Assume that the zeros due to
feedforward have been eliminated. Design for com-
plex poles p2 and p3. Use R0 = R1 = R2 = 5 k�,
C0 = C1 = 0.5 pF, and C2 = 6 pF. Use gm0 = gm1 and
gm2 = 6gm1.

9.36 For the three-stage op amp with nested Miller
compensation in Fig. 9.30c, determine the values of
the compensation capacitors that give a 45◦ phase
margin when the op amp is in a unity-gain negative
feedback loop (f = 1). Assume that the zeros due to
feedforward have been eliminated. Design for widely
spaced real poles. Take R0 = R1 = R2 = 5 k�, C0 =
C1 = 0.5 pF, and C2 = 6 pF. Use gm0 = gm1 and
gm2 = 6gm1.

9.37 The single-stage op amp in Fig. 9.54 has a
45◦ phase margin when the op amp is in a unity-
gain negative feedback loop (f = 1) with an output
load capacitance CL = 1 pF. What value of CL will
give a 60◦ phase margin? (Assume that the capaci-
tance at the op-amp output is dominated by CL and
the op-amp gain av (s) can be modeled as having two
poles.)

9.38 The single-stage op amp in Fig. 9.54 has a
nondominant pole p2 with |p2| =200 Mrad/s. The
op amp is in a unity-gain negative feedback loop
(f = 1).

(a) If gm1 = 0.5 mA/V, what value of CL gives
a 45◦ phase margin? (Assume that the capacitance at
the op amp output is dominated by CL and the op-amp
gain a(s) can be modeled as having two poles.)
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Figure 9.62 Feedback circuit for
Problem 9.40.
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Figure 9.63 Circuit for Problem
9.41.
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Figure 9.64 Circuit for Problem
9.42.

(b) If ITAIL = 0.5 mA, what is the output slew rate
with this CL?

9.39 The feedback circuit in Fig. 9.55 is a
switched-capacitor circuit during one clock phase.
Assume the op amp is the telescopic-cascode op amp in
Fig. 9.54. Take CL = 1.5 pF, CI = 4 pF, CS = 0.4 pF,
and Cip = 0.1 pF.

(a) If ITAIL = 0.2 mA, what is the output slew
rate?

(b) Assume that gm1 = 0.1 mA/V, the loop trans-
mission [loop gain T (s) or return ratio �(s)] can
be modeled as having two poles, and the magnitude
of the nondominant pole p2 is |p2| =200 Mrad/s.
What is the phase margin of this feedback
circuit?

9.40 Calculate the return ratio for the feedback
circuit in Fig. 9.62. Assume that the amplifier voltage
gain is constant with av > 0. Show that this feedback
circuit is always stable if each impedance is either a
resistor or a capacitor.

9.41 Calculate the return ratio for the integrator in
Fig. 9.63. Show that this feedback circuit is stable for
all values of R and C if av (s) has two left half-plane
poles and av (s = 0) > 0.

9.42 Calculate the return ratio for the inverting
amplifier in Fig. 9.64. Here, the controlled source and
Cin form a simple op-amp model. Assume av (s) =
1000/[(1 + s/100)(1 + s/106)].

(a) Assume the op-amp input capacitance Cin = 0.
What is the frequency at which |�(jω)| = 1? How
does this frequency compare to the frequency at which
|av (jω)| = 1?

(b) Find the phase margin for the cases Cin = 0,
Cin = 4 pF, and Cin = 20 pF.

9.43 A technique that allows the return ratio to
be simulated using SPICE without disrupting the dc
operating point is shown in Fig. 8.60 and explained in
Problem 8.33.

(a) Use that technique to simulate the return ratio
for the op amp from Problem 9.21 connected in a
noninverting unity-gain configuration for f = 1 kHz,
100 kHz, 10 MHz, and 1 GHz.

(b) Use that technique to plot the magnitude and
phase of the return ratio. Determine the unity-gain fre-
quency for the return ratio and the phase and gain
margins. [Note: This calculation requires combining
the complex values of �

′
i(jω) and �

′
v (jω) to find the

complex quantity �(jω).]
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Figure 9.65 Circuit for Problem 9.45.

9.44 Repeat Problem 9.43 for the circuit in
Fig. 9.64 with Cin = 4 pF. Inject the test sources on the
left-hand side of the feedback resistor. Use av (s) from
Problem 9.42. Compare the simulation results with the
calculated values from Problem 9.42.

9.45 Repeat Problem 9.43 for the local feed-
back circuit in Fig. 9.65. For the transistor, W =
50 �m and Leff = 0.6 �m. Use the device data in
Table 2.4. Ignore the drain-body junction capacitance
(assuming it is small compared to the 2-pF load
capacitor).

9.46 Consider a two-stage CMOS op amp mod-
eled by the equivalent circuit in Fig. 9.18, where
is = gmvid and vid is the differential op-amp input.
Let gm = 19.7 mA/V, R1 = R2 = 6.67 k�, and C1 =
C2 = C = 2 pF. Calculate and sketch the root locus
when feedback is applied as f varies from 0 to 1. Cal-
culate the real component of s for which the poles
become complex. Is the amplifier unconditionally sta-
ble? If yes, calculate the pole positions for unity-gain
feedback. If no, find the loop gain required to cause
instability.
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